
AFRL-VA-WP-TR-2005-3079

GEOMETRY AND GRID MODELING FOR
NUMERICAL SIMULATION

John P. Steinbrenner (Pointwise, Inc.)

Todd Michal (The Boeing Company)

Pat J. Yagle (Lockheed-Martin Aeronautics Company)

J. P. Abelanet (Basis Software)

Pointwise, Inc.
213 S. Jennings Ave.
Fort Worth, TX 76104

JUNE 2005

Final Report for 23 October 2002 – 23 October 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRLIWS) Public Affairs Office (PAO) and is releasable to the National Technical
Information Service (NTIS). It will be available to the general public. including foreign
nationals.

PA0 Case Number: AFFUIWS-05-0051, 10 Jan 2005

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

-.A- pp4//+k -~ ~

,($ki[< .isL-(,,
Nopadol Tarmallpark Dcou as C. Blake
Project Manager Branch Chief

I \ .
IM J . M R Chief

Aeronautical Sciences D i v b h
Air Vehiclem Dimctarata

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

June 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)
23 Oct 2002– 23 Oct 2004

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
F33615-02-C-3249

Geometry And Grid Modeling For Numerical Simulation 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER
0602201

6. AUTHOR(S)
John P. Steinbrenner (Pointwise, Inc.)

5d. PROJECT NUMBER
A00H

Todd Michal (The Boeing Company)
Pat J. Yagle (Lockheed-Martin Aeronautics Company)

5e. TASK NUMBER

J. P. Abelanet (Basis Software) 5f. WORK UNIT NUMBER
0A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Pointwise, Inc.
213 S. Jennings Ave.
Fort Worth, TX 76104

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AIR VEHICLES DIRECTORATE

AIR FORCE RESEARCH LABORATORY AFRL/VAAC

AIR FORCE MATERIEL COMMAND 11. SPONSOR/MONITOR’S REPORT

WRIGHT-PATTERSON AFB, OH 45433-7542 NUMBER(S)

 AFRL-VA-WP-TR-2005-3079
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES
This document has color content.
14. ABSTRACT
An application programmer’s interface known as API V2 was written to facilitate the sharing of unstructured meshing
technology among computational analysts developing or requiring meshing methods. API V2’s architecture consists of a
database and a meshing library. The database library owns all mesh data and contains API functions for the transfer of data
between the mesh library and the application. It also contains functions for dynamic loading of meshing libraries, allowing
applications to access multiple meshing libraries simultaneously. The more compact meshing library API contains functions to
extract the particulars of the library, including run-time parameters, allowable mesh types and available algorithms. Algorithm
types are non-specific and may pertain to peripheral mesh operations as well as generation techniques. An example
implementation of a database library is included for distribution. Its use markedly reduces the effort required to develop
compliant applications or meshing libraries. An example Fortran wrapper library is also provided to allow Fortran applications
to access compliant libraries. API V2’s utility is demonstrated via sample implementations of two proprietary applications and
a proprietary meshing library. API V2’s future viability as a standard for unstructured meshing is dependent on the ability to
maintain and extend the API, to provide training and to define certification criteria.
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
1Lt Nopadol Tarmallpark

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

SAR

86

19b. TELEPHONE NUMBER (include area
code)
937-904-4050

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

i

Abstract
An application programmers interface known as API V2 was written to facilitate the
sharing of unstructured meshing technology among computational analysts developing or
requiring meshing methods. API V2’s architecture consists of a database and a meshing
library. The database library owns all mesh data and contains API functions for the
transfer of data between the mesh library and the application. It also contains functions
for dynamic loading of meshing libraries, allowing applications to access multiple
meshing libraries simultaneously. The more compact meshing library API contains
functions to extract the particulars of the library, including run-time parameters,
allowable mesh types and available algorithms. Algorithm types are non-specific and
may pertain to peripheral mesh operations as well as generation techniques. An example
implementation of a database library is included for distribution. Its use markedly
reduces the effort required to develop compliant applications or meshing libraries. An
example Fortran wrapper library is also provided to allow Fortran applications to access
compliant libraries. API V2’s utility is demonstrated via sample implementations of two
proprietary applications and a proprietary meshing library. API V2’s future viability as a
standard for unstructured meshing is dependent on the ability to maintain and extend the
API, to provide training and to define certification criteria.

ii

Table of Contents
1 Summary.. 1

2 Introduction... 2

3 Review of Related Efforts... 4

3.1 Meshing APIs .. 5
3.1.1 Algorithm Oriented Mesh Database ... 5
3.1.2 Field Model... 6
3.1.3 Grid Algorithms Library ... 6
3.1.4 TSTT... 7
3.1.5 GNU Triangulated Surface Library .. 8

3.2 Geometry APIs .. 9
3.2.1 Acis ... 9
3.2.2 Parasolid.. 10
3.2.3 Open CASCADE .. 10
3.2.4 CAPRI... 11
3.2.5 CAD Services - OMG... 12

3.3 Geometry/Meshing APIs ... 12
3.3.1 GGTK ... 12

3.4 Computer Science APIs... 13
3.4.1 Standard Template Library ... 13
3.4.2 Component Object Model Technology... 14
3.4.3 Common Component Architecture Forum ... 14
3.4.4 Babel/SIDL ... 16
3.4.5 PETSc ... 16

3.5 Recommendations and Conclusions ... 17
3.5.1 Justification... 17
3.5.2 Alternate Design Formats ... 17
3.5.3 Industry Standards .. 18
3.5.4 Existing Components for Reuse.. 18
3.5.5 Collaboration... 18

4 Review of UGC API Version 1.0.. 19

4.1 Terminology .. 19

4.2 Objectives.. 20

4.3 Scope ... 20

4.4 Architecture... 20

4.5 Data Structure... 21

4.6 Memory Management ... 21

iii

4.7 Fortran/C Interface... 22

4.8 Error/Message Handling .. 22

4.9 Geometry... 22

4.10 Reuse ... 23
5 Recommendations for API Version 2.0... 24

5.1 API Namespace and Library Management... 24

5.2 API Programming Language.. 25

5.3 Data Passing... 25

5.4 Geometry... 26

5.5 Optional Data ... 27
6 Coordination With Other Efforts.. 28

7 API Version 2.0 Design... 28

7.1 Scope ... 29
7.1.1 API Programming Language .. 29
7.1.2 Mesh Types... 29
7.1.3 Element Types .. 29
7.1.4 Atomic Data Types ... 35
7.1.5 Assumptions and Limitations ... 35

7.2 Conventions... 35

7.3 Terminology .. 40
7.3.1 Mesh Topology Entities.. 40
7.3.2 Mesh Entities .. 41
7.3.3 Mesh Geometry Entities ... 42
7.3.4 Geometry Entities ... 42
7.3.5 Non-Entity Abstractions ... 43

7.4 Architecture... 44
7.4.1 Database Library... 45
7.4.2 Meshing Library.. 52

7.5 Usage Scenarios.. 55
7.5.1 Meshing Library Only... 55
7.5.2 Database and Meshing Libraries... 56
7.5.3 Database and Meshing Libraries with Direct Meshing............................. 56
7.5.4 Database and Multiple Meshing Libraries.. 58
7.5.5 Database and Meshing Libraries with Alternate Plugins.......................... 59
7.5.6 Others.. 60

8 Demonstration... 60

8.1 Feature Demonstration... 60

iv

8.2 Integration Into Existing Applications.. 61
8.2.1 Database Library Development .. 61
8.2.2 Fortran Wrapper Library Development .. 61
8.2.3 Mesh Library Conversion ... 62
8.2.4 Application Conversion and Demonstration... 63

9 Deliverables ... 69

9.1 Data Item A001 - Final Report ... 70

9.2 Data Item A002 – Contractor’s Billing Voucher.. 70

9.3 Data Item A003 – Funds and Man-Hour Expenditure Report 70

9.4 Data Item A004 - Presentation Material .. 70

9.5 Data Item A005 - Software User Manual ... 70

9.6 Source Code Utilities .. 71
9.6.1 Header Files .. 71
9.6.2 Sample Database Library.. 71
9.6.3 Sample Fortran/C Library ... 72
9.6.4 Sample Plugin Library .. 74

10 Conclusions.. 76

11 References.. 77

v

List of Figures

Figure 1. UGC API V2 Entity Hierarchy.. 40

Figure 2. Meshing Library Only ... 55

Figure 3. Database and Meshing Libraries ... 56

Figure 4. Database and Meshing Library with Direct Meshing.. 57

Figure 5. Database and Multiple Meshing Libraries .. 58

Figure 6. Database and Multiple Meshing Libraries with Alternate Plugins 59

Figure 7. Single Sheet Mesh Comparison in MADCAP .. 65

Figure 8. Multi-Sheet Demonstration in MADCAP... 65

Figure 9. Dense Single Sheet Demonstration in MADCAP ... 66

Figure 10. Multi-Sheet Dmonstration in APPT .. 67

Figure 11. Close-up of Multi-Sheet Demonstration in APPT... 68

Figure 12. Singular Surface Demonstration in APPT... 68

Figure 13. Periodic Surface Demonstration in APPT... 69

vi

List of Tables
Table 1. Supported Element Types... 34

Table 2. Atomic Data Types ... 35

Table 3. Namespace Terms... 39

Table 4. Error Codes ... 40

Table 5. Topology Entities.. 41

Table 6. Mesh Entities .. 42

Table 7. Mesh Geometry Entities ... 42

Table 8. Geometry Entities ... 43

Table 9. Non-Entity Abstractions ... 44

Table 10. Comparison of Original and UGC Compliant Application (MADCAP) 64

Table 11. Fortran and C Interfaces to UGCDB_SurfaceVertex_Assign_SurfaceGeometry
... 73

vii

1 Summary
Unstructured grid generation is a rapidly advancing technology among computational
engineering disciplines, primarily because it permits generation times significantly faster
than traditional methods. Unfortunately, new methodologies are often developed using
local conventions, programming languages and formats, making the transfer of the
technology among developers impractical. Recognizing this problem, the Unstructured
Grid Consortium was established in 1999 as a forum for the exchange of unstructured
mesh technology among various development efforts. The UGC was initially tasked with
the development of an application programmers interface (API) for unstructured meshing
that would facilitate the transfer of meshing technology. The first version of this API
(API V1) was released by the UGC in 2002.

Continuing on that effort’s success, this contracted effort was tasked with designing,
developing and demonstrating a second generation API (API V2) for unstructured mesh
technology transfer. This effort began with the review of related geometry, grid and
computer science APIs, with the intention of identifying standards, potential
collaboration with other efforts, and opportunities for reuse among these projects. With
the resulting information in mind, API V1 was then carefully critiqued to identify those
features of API V1 worth retaining as well as those to be discarded.

A number of recommendations for API V2 were made from these reviews. First, the API
should be written in the C programming language, with function names following a well-
defined convention. Second, data should be transferred to/from the application and the
library piecemeal via a hierarchical function set, thereby requiring the library to be the
primary owner of the data. Next, geometric data and functionality should be divorced
from the API so that library developers can concentrate on meshing methods. Finally,
optional data transfer should be provided so that run-time parameters unique to a given
meshing method can be controlled by the application.

The resulting API V2 espouses all of these ideas within two separate libraries. The
database library acts as a central data repository and is used primarily for mesh data
transfer between the meshing library and the application. However, it also contains API
functions for parameter (optional) data transfer, plugin functions that facilitate dynamic
loading of meshing libraries, and hooks to specify geometry functions via callback
registration. Plugin functionality allows users to work with multiple API-compliant
meshing libraries simultaneously. An example database library of the entire database
API was developed and is included with the distribution, thus significantly reducing the
application and library developer’s development burden. A Fortran interface library was
also written (again, included in the distribution) to allow Fortran applications to link to
the API reliably.

The meshing library consists of a very lean set of functions for general meshing
algorithms. The library is tasked with advertising its capabilities (algorithms), mesh
element requirements, and tunable parameters via API functions designed for those

1

purposes. Library developers are also free to include meshing algorithms beyond curve,
surface and/or volume generation, such as mesh quality assessment and adaption.

The API is distributed via directly usable C header files. A comprehensive html-based
hyper-linked User Manual was also developed, containing full documentation of
functions and data structures, example code, explanations of terminology, possible usage
scenarios, and API implementation guidelines. It also references the database, Fortran
and plugin libraries distributed with the API.

The utility of the new API V2 was demonstrated via API implementations of two existing
applications and a mesh library. From here, API V2’s acceptance as a standard is
dependent on the Air Force and the UGC’s ability to encourage its usage among potential
developers. This may require additional efforts such as active maintenance and extension
of the API, application/library developer support and training, establishment of a
repository of compliant libraries, and defining procedures for library certification.

2 Introduction
Preparation of a discretization of a three dimensional spatial region (a mesh) is a
prerequisite of most computer aided engineering (CAE) software, including
computational structural mechanics, computational electromagnetics, and computational
fluid dynamics (CFD). Unfortunately, meshing is the current bottleneck in the CFD
process, often requiring up to 75% of an analyst’s labor. Until fairly recently, the
inordinate amount of meshing labor was due to the prevalence of multi-block structured
meshes, a relatively mature meshing methodology. Structured mesh generation involves
subdividing the spatial region into contiguous, six-sided blocks, followed by discretizing
each block with an ordered (i.e. structured) I x J x K array of hexahedra.

An emerging meshing methodology known as unstructured meshing has recently shown
significant potential for reducing CFD meshing labor. The labor reductions are made
relative to structured grids by removing the need to create a blocking topology and by
eliminating the requirement to impose structure on the mesh cells. Unfortunately, the
efficiencies gained from the use of unstructured meshes come with a price. The number,
size, and shape of unstructured mesh cells (usually tetrahedra) are deficient with respect
to hexahedra. More tetrahedra than hexahedra are required to discretize the same volume
(increasing the required computing resources) and CFD solution accuracy seems to be
much more sensitive to unstructured mesh cell size and shape than structured hexahedra.
These deficiencies combine with the relative immaturity of the methodologies to make
unstructured meshing a highly active area of research. As a result, several societies,
annual conferences and symposia are dedicated to meshing [1][2].

It is somewhat of a paradox that this high rate of research and innovation in unstructured
meshing tends to stifle the deployment of new methodologies in meshing applications.
Though new methodologies are being developed by a variety of organizations from

2

industry, government, and academia, each implementation is usually developed following
local programming practices. Once published, significant software re-engineering may
be required to implement a new meshing library into an existing application. Although
motivated by the desire for a state-of-the-art meshing application, an application
developer may find that the re-engineering effort negates any potential gains from use of
the new method. Consequently, new unstructured grid technology is slow to be
incorporated into existing applications, and the sharing of new technology among mesh
library developers is minimal.

One approach to overcoming these difficulties is to develop a specification that governs
the interaction between meshing software components. Software that follows this
specification would be guaranteed to work with other software conforming to the
specification. A prerequisite for this approach to be successful is that the specification be
accepted and implemented by a sufficient base of software developers. There are many
software specifications that have enjoyed this kind of success. Notable examples include
the Object Management Group (OMG) [3] and the CFD General Notation System
(CGNS) [4] efforts. These specifications have been successful in part because they were
designed by a team of software developers representing a cross-section of the potential
audience.

The Unstructured Grid Consortium (UGC) was formed in 1999 as a forum for facilitating
the interchange of unstructured grid technology between various development efforts [5].
This alliance has grown to include members from industry, government labs, universities,
and small companies. This group is tasked with coordinating the development and
implementation of an Application Program Interface (API) to govern the interaction
between mesh generation software modules or libraries and mesh generation applications.
Version 1.0 of this specification (API V1) was completed in 2002 [6]. Shortly after this
API was released, the need for further development of and extensions to the API was well
understood. Unfortunately, many of the participating agencies in the UGC were unable
to secure additional internal funding for this project, which limited the opportunity for
further extensions. Recognizing the risk of allowing the project to stall just as it was
taking shape, the U.S. Air Force released a PRDA in mid-2002 for contracted
continuation of the API development. The results of the ensuing two-year effort,
conducted by Pointwise, Inc., with Boeing and Lockheed-Martin as subcontractors and
Basis Software as a consultant, are presented in this report.

The overall objective of this effort is the design, development and demonstration of a
new API (API V2) for unstructured meshing software that will further reduce the burden
associated with meshing software integration and sharing. Successful adoption of API
V2 as an industry standard will provide many benefits. It will accelerate the transfer of
mesh generation technology from the researcher to the user and reduce software
development and support costs. Government and university researchers may use this API
to share mesh generation modules, thereby accelerating development of new technology.
Finally, an API standard may open new markets for commercial software vendors
looking to develop API-compliant frameworks and modules that can be marketed
together or individually.

3

The document is roughly divided into two parts, the first corresponding to the review and
analysis of previous and related efforts, and the second corresponding to the new API
designed and developed as a result of this analysis.

Chapters 3 through 6 describe the review of the original API V1 and related efforts that
were conducted during the first half of the effort. These reviews were used to forge
recommendations for API V2 (Chapter 5) and also identified opportunities for coordinate
efforts with other projects (Chapter 6).

Chapters 7 through 9 describe the new API that was developed primarily in the second
half of this effort. Chapter 7 outlines the design of API V2, including conventions,
scope, terminology, architecture and usage scenarios. Chapter 8 presents several
demonstrations of the API, describing example implementations of key features as well
as full implementations of the library using commercial and proprietary grid generation
software. Finally, Chapter 9 discusses the API V2 deliverable items of this contract.

A concluding chapter summarizes the effort and offers recommendations for future
versions.

3 Review of Related Efforts
In order to design an unstructured grid generation API that is applicable to a wide range
of engineering analyses, a broad awareness and understanding of the tools available to
analysts was first required. Toward this end, an extensive literature and web search for
existing and emerging grid generation standards was conducted. The search was initiated
by starting from known grid generation repositories, expanding outward following
references and hyperlinks.

The results of these searches helped to resolve a number of issues that influenced the
design of API V2. The more important of these issues are described below.

• Justification – Even a cursory literature search should answer the basic question
of whether or not an accepted API for unstructured grid generation already exists,
thereby justifying (or not) the need for a new one.

• Alternate Design Formats – Careful examination of related APIs provides
exposure to formats, languages, syntaxes and practices that might not otherwise
be considered. This creates the potential for revolutionary, rather than
evolutionary changes to be incorporated in the development of a second
generation API. Such changes would likely be employed to facilitate ease of use,
efficiency, and familiarity.

• Accepted Industry Standards – Patterning the API after accepted standards in
similar and related fields increases the likelihood of the API’s short-term

4

acceptance and long-term viability. It also potentially eases the burden of
incorporating the API into existing software, and promotes compatibility with
other efforts.

• Existing Components for Reuse – It is possible that this API may have direct
applicability with other ongoing or completed efforts, either as a subset or
superset. For example, this API may be compatible for use as a subset of a
general analysis API, or a low-level data manipulation API may be usable as a
component of this effort. In either case, API reuse could significantly reduce the
overall effort of one of the two parties. Also, existing libraries may prove to be
candidates for demonstration of the new API.

• Collaboration With Other Efforts – Even if a natural fit between efforts is not
found, it may still be possible to identify ongoing efforts with which mutual
collaboration would be advantageous to each.

With these five elements in mind, a total of sixteen related efforts were identified and
reviewed, divided into four different categories. These reviews were completed in June,
2003, and hence may already be dated, incomplete, and/or inaccurate. For this reason,
references to current URLs for each project are provided.

Finally, these reviews are not intended to be subjective in nature. No recommendations or
rejections may be implied from them; they are intended only to help in the design of API
V2.

3.1 Meshing APIs
For obvious reasons, APIs for meshing were the most important class to identify and
review. A total of five meshing APIs were identified.

3.1.1 Algorithm Oriented Mesh Database

The Algorithm Oriented Mesh Database (AOMD) [1], developed at Rensselaer
Polytechnic Institute (RPI), is a method of describing the connectivity of a mesh. It is
written entirely in C++ and is available freely under a license similar to the GNU GPL.
AOMD provides an efficient method of maintaining and accessing connectivity
information for a mesh, while at the same time reducing the memory requirements for the
storage of a mesh and its connectivity. It also allows for mesh adaption and various
element types.

AOMD has the potential to provide an efficient framework for describing mesh
connectivity and reducing the memory required for mesh storage. It also uses the
established Standard Templates Library and may be reused as long as the source is
provided without charge and a disclaimer is included. However, existing documentation
is limited, and an on-line manual is not yet available.

5

3.1.2 Field Model

Field Model [8] was developed by Patrick Moran at NASA ARC as a second pass at the
Field Encapsulation Library (FEL). The source is written entirely in C++ and is freely
available under the MIT license. Field model uses an abstraction of the general mesh
problem to represent mesh and field data on both structured and unstructured grids. For
example, the faces method within the FM_mesh class is used to return all entities of
higher and lower topological value. Applied to a surface, faces(1) will return a list of
all edges using it, faces(2) will return the surface itself, and faces(3) will return
all volumes using it.

The techniques used in Field Model are probably best suited for the transfer and
interpretation of field data rather than the mesh itself. Initial software timings of Field
Model indicate speeds that vary from equivalent to direct data structure access to an order
of magnitude slower. Little attention appears to have been given to efficiency at this time.
A web search revealed little usage of the library.

It may be advantageous to borrow some general element storage and manipulations
concepts for the GGMNS API. This would provide for consistent and general argument
lists in the API, but it likely would require significant effort on the library developer's
part.

3.1.3 Grid Algorithms Library

The Grid Algorithms Library (GrAL) [9] is a method of coding mesh operations
generically using templates. It was developed by Guntram Berti, now with NED C&C
Research Laboratories, and appears to be a continuation of his Ph.D. dissertation. GrAL
is written entirely in C++ and is freely available, though a cursory web search revealed
minimal references to the library.

GrAL uses modern programming techniques, such as the Standard Templates Library and
generic programming. It is an example of generic programming in that the abstract
functionality of the application is separated from the specific details of a given case.

The GrAL kernel contains function of 4 classes: Combinatorial, Geometry, Grid and
Partial. The Combinatorial functions allow access to subset and superset components of
the grid (incidence iterators), as well as adjacent-component information (adjacency
iterators). Geometry functions include information about vertices and volumes. Grid
functions act on the entire mesh. Lastly, the partial functions include storage for subsets
of entities.

Several general-purpose tools have already been implemented into GrAL. A Cell
Neighbor Search algorithm is designed to find a cell’s neighboring cells. Subrange and
Closure Iterators are used for marking strategies to visit each element of a given type in a
given range. Boundary Iterators use switch operators, incidence information and marking
procedures to traverse the boundaries of manifold-with-boundary grids. Vertex merging,
currently implemented via direct node-to-node comparisons, is used to allow nodes of

6

disjoint grids to be geometrically united. The current algorithm could easily be
optimized.

An example is provided which demonstrates how to merge structured and unstructured 2d
meshes into a hybrid mesh. Starting with an inner structured mesh generated using
Knupp’s ortho mesher, the CopyGrid function is used to load the mesh into a hybrid
structure. The outer boundary of the hybrid mesh is then extracted via boundary iterators
and used as input to Shewchuk’s Triangle mesher. The two meshes are then joined into a
hybrid mesh using the EnlargeGrid() function, and the internal vertex-merging
algorithm is employed to identify common vertices.

Problems commonly associated with generic programming are identified within the
documentation. For instance, generic programming techniques are difficult to use,
compile and debug, which makes them particularly vexing to beginners. In addition, they
are expensive in terms of memory requirements and compile times.

3.1.4 TSTT

The goal of the Terascale Simulation Tools and Technologies (TSTT) [10] effort is to
create interoperable and interchangeable meshing and discretization software. The effort
seeks to formulate a broad, comprehensive design that encompasses many varied aspects
of the meshing and discretization process, including advanced meshing technologies,
high-order discretization techniques, and terascale computing issues.

The TSTT Inter-Operable Meshing effort is focused on developing a common interface
for mesh, geometry and topology access. This interface does not require an application to
use a particular data structure or implementation. Accessor interfaces are used to view
data. The challenge of the effort has been to balance performance with the flexibility to
support a wide variety of mesh types and the desire to keep the interface simple. The
TSTT group is working closely with the Common Computer Architecture (CCA) forum
to investigate the use of SIDL/Babel language interoperability tools. SIDL is being used
to define interfaces in a language-independent manner. Bindings for C, C++ and Fortran
have been created using SIDL for mesh implementations. Ongoing tests are looking at the
performance impact of using SIDL, especially in fine-grained operations such as entity-
by-entity access. In addition, efforts have been initiated to merge two TSTT tools,
Overture and Frontier, and a version of the MESQUITE mesh quality component is under
development that will adhere to the TSTT interface definition.

The TSTT mesh interface uses a hierarchical representation of the mesh, with Level A
containing geometry information, Level B containing the full mesh, and Level C
containing mesh components. Access to the mesh is through these different levels. At
Level B, code developers can access the entire grid hierarchy as a single object, and call
functions that provide (e.g.) partial differential operator discretizations, adaptive mesh
refinement or multilevel data transfer over the entire mesh. In addition to the high level
interface, access is provided to the hierarchy at low levels to facilitate incorporation of
tools into existing applications. This could provide access to Fortran-callable routines that
return discretization or interpolation coefficients at a single mesh point. The interface

7

standard requires that all implementations must provide high- and low-level access to the
mesh.

The mesh itself is divided into entities named VERTEX, EDGE, FACE and REGION.
Supported face types include triangle, quadrilateral and general polygon. Tetrahedron,
hexahedron, prism, septahedron and general polyhedron volume elements are supported
in 3D. Coordinate and adjacency (connectivity) information is provided on an entity-by-
entity basis for the entire mesh as a collection of arrays. This data can be obtained in
chunks of user-specified size (e.g. 100 entities at a time). The interface definition
currently supports mesh creation, loading, destruction and services to access basic
information such as geometric dimension, number of each entity, etc. Users may also
attach data, such as boundary conditions, to any mesh entity.

A discussion with Lori Freitag of the TSTT effort provided further information. The team
has been working primarily on interface definition. Interfaces consist of lists of
parameters to be passed and definitions of query functions to access the data. Data is
stored in the component, while opaque pointers to the data are used to pass through
interfaces. The current focus is on low-level interfaces (e.g., add a vertex or an element),
though future work may focus on high-level interfaces such as mesh generation. All of
the TSTT interfaces follow SIDL/Babel rules.

The implementation of a new module/component involves developing a wrapper that
matches the interface definition, followed by providing query functions for accessing
and/or returning data. TSTT contributors at Rensselaer Polytechnic Institute (RPI) are
developing a standard reference set of query functions, which will satisfy the majority of
new modules’ querying needs.

The discussion also covered the current status of the TSTT effort. The mesh query
interface is well defined and exists for three different objects, namely mesh, geometry
and field data. Mesquite, a grid quality improvement code, has been retrofitted to use the
interface definitions. Simple example cases are under development at RPI and should be
available when complete. The TSTT group is interested in the possibility of using the
GGMNS interface as a high-level interface definition for TSTT.

Working collaboratively with the TSTT group could be advantageous. It would allow
reuse of some of the existing TSTT body of work within the GGMNS effort. A common
high-level grid generation interface could be developed either by making the GGMNS
API compliant with TSTT standards or by writing a wrapper around the GGMNS API.
The SIDL/Babel language interoperability tools could be re-used in the GGMNS effort.
There is also the potential for commonality between the TSTT accessor functions and the
GGMNS data retrieval interfaces. Compatibility between the GGMNS and TSTT efforts
would benefit both in terms of the number of available tools.

3.1.5 GNU Triangulated Surface Library

The GNU Triangulated Surface library (GTS) [11] is a collection of software utilities for
the manipulation of triangulated surface representations. It was developed entirely in C
and is available under the GNU software license.

8

Several functions have been incorporated into the GTS library. They include 2D
Delaunay triangulations, set operations on surfaces, surface refinement and coarsening,
dynamic continuous level-of-detail, utilities for efficient point location and
collision/intersection detection, graph partitioning, metric operations (area, volume,
curvature), and triangle strip generation for fast rendering.

All procedures within GTS use an implied object-oriented data structure. Classes are
defined for Points, Vertices, Segments, Edges, Triangles and Faces. Class hierarchy is
implemented via nested C structures and type casting. Interface definitions are built
around a specific object-oriented model.

GTS requires that all library functions use the GTS object-oriented model. It also requires
that the GTS library data structures and object-oriented model be implemented in the
calling applications. If this is not possible or desirable, file I/O may be used to transfer
data to modules. This requirement implies that modules must be developed with GTS in
mind, making retroactive implementation difficult. These requirements may make GTS
too restrictive to use as a general standard.

For the GGMNS project, however, it may be possible to examine the GTS data structure
for inclusion in the GGMNS interfaces. It may also be possible to write wrappers around
some GTS functions as part of an API-compliant meshing library, which could then be
documented as an example application. GTS may also be a good starting point for
collecting public-domain modules that are compatible with the GGMNS standard.

3.2 Geometry APIs
Since the CAD industry is significantly more mature than the analysis field, it is logical
to search for API standards already existing in that field. with the intent of adopting some
of these standards in a grid generation API. Geometry APIs are also of great interest due
to grid generator’s reliance on CAD models for surface meshing. A total of five
geometry APIs were identified and reviewed.

3.2.1 Acis

ACIS [12] is an object-oriented three-dimensional modeling engine commercially offered
by Spatial Technology. It is a B-Rep solid modeler allowing manifold and non-manifold
geometries/topologies. All linear and quadric geometries are represented analytically,
while free-form geometries are represented using NURBs. All surface types, including B-
Spline, implicit, and foreign surfaces, are bi-parametric and can be evaluated up to the
second derivative.

The ACIS API is available in either C++ or Scheme. Function wrappers for C and
Fortran are not provided, but C wrappers should not be difficult to develop. The API is
full-featured, and includes modules that perform rendering, covering (skinning),
blending, laws, Boolean operations, tolerant modeling, cellular topology, and many
others.

9

Basic usage of the ACIS API requires thirty to fifty dynamically linked libraries (DLLs)
and more than thirty megabytes of free RAM. CAD translator modules, for many major
CAD packages, are available as a separate product for use with ACIS. Also available
separately is a Deformable Modeling Module.

ACIS could serve as a foundation for a geometry library, but the fact that it is written in
C++ would require C wrappers to be written for all API calls needed in the library. This
potential could be dampened by the fact that ACIS is a commercial product. The
interface structure should probably be examined in more detail to provide ideas
pertaining to the GGMNS API structure.

3.2.2 Parasolid

Parasolid [13] is a commercial solid-modeling kernel. It serves as the basis for
Unigraphics and several other CAD/CAM/CAE packages. It is an exact boundary
representation (B-Rep) solid modeler. All surface types, including B-spline, implicit and
foreign surfaces are bi-parametric and can be evaluated up to the second derivative. C-
language bindings are provided, although C++ and Fortran bindings should be possible as
well.

As the geometry foundation for a modular meshing application that is independent of the
modeling kernel used, Parasolid could serve as the basis for surface and volume meshing
algorithms that work in surface parameter space (2-D), as well as for those that work in
model space (3-D). Functions within Parasolid that evaluate surfaces and their derivatives
could be used as templates for the geometry callback typedefs in the GGMNS API. As an
example of a successful library with an object-oriented interface, the Parasolid interface
structure could be examined for potential ideas on structuring the GGMNS API.

3.2.3 Open CASCADE

Open CASCADE [14] is a collection of open-source modules and a framework for the
creation and manipulation of geometry objects. It is maintained by Open CASCADE
S.A, a company also offering custom development and technical support. Existing
modules include foundation classes, primitive types, memory management, exception
handling, classes for manipulating aggregates of data, math tools, ASCII file input and
output, and the Cascade data model, which are data structures for representing two- and
three-dimensional geometry and topology.

OPEN CASCADE contains a number of capabilities typical of general CAD systems.
These include geometric tools for creating and modifying two- and three-dimensional
geometry, intersection and projection of entities, sewing of entities into solid
representations, mesh algorithms for shape triangulation, visualization tools, shape
healing, and data transfer functions such as STEP/IGES readers and direct connectors to
CAD packages.

The Open Cascade Application Framework (OCAF) is an open-source framework to
build around existing applications. It includes geometry, input/output, creation,
manipulation, and visualization tools. OCAF provides a C++ framework and

10

infrastructure for developing new geometry-based applications. The GUI
framework/infrastructure is intended for developing a GUI for applications based on
OCAF. Applications using OCAF must use the Cascade data model.

Open CASCADE could potentially be used as an example implementation of geometry
callbacks in the UGC API. Since it is open source, this demonstration might be
releasable to the general public. The Open Cascasde Application Framework could also
be used to build a demonstration application around the UGC API. Since OCAF is open
source, that resulting code could be released as well for use as a tutorial to future
application developers.

3.2.4 CAPRI

The Computational Analysis Programming Interface (CAPRI) [15] is a geometry-based
infrastructure for analysis and design. It consists of a CAD vendor-neutral API, the
CAPRI geometry kernel, and the CAPRI geometry database. All geometry evaluations
and calculations are performed by the CAD system itself, with CAPRI acting as an
interface between the application and the CAD system. The geometry is required to be in
the form of a solid model and the CAD system must be running when using CAPRI.

The CAD developer APIs currently supported are Parasolid (UniGraphics and
SolidWorks), ProToolKit (ProENGINEER), CATGEO (Catia 4.2) and CV-DORS
(CADDS).

The CAPRI "standard" geometry and topology model consists of nodes, edges, loops,
faces, boundaries and volumes. An edge is a parameterized curve. A loop is an ordered
collection of edges. A face is a parameterized surface bounded by 1 or more loops. A
boundary is a collection of 1 or more faces. Finally, a volume is a closed collection of
boundaries.

The CAPRI API consists of the following components: utility routines for loading and
saving parts and assemblies, database queries for obtaining the details of any geometric
entity, point queries to allow placing points on a geometry, geometrically derived queries
such as the length of an edge, boundary data routines for control over discretizations,
attachment and interpolation routines; tag routines; and geometry creation and
modification routines.

CAPRI provides separate APIs for Fortran and C/C++. The C interfaces return pointers to
memory blocks. The Fortran calls fill arrays from the calling routine, where sizes must be
passed in the call. The calls return simple arrays and constants of standard types. No
structures are used.

C example:
Icode=gi_dTesselFace(vol, face, *ntri, **tris, **tris,
*npt, **pt, **ptype, **pindex, **uv)

FORTRAN example:
ICODE= IG_DTESSELFACE(VOL, FACE, NTRI, TRIS, TRIC, NPT, PT,
PTYPE, PINDEX, UV)

11

Tags and Attachments are used to pass data between modules. Tags place simple
quantities associated with the volume or boundary of interest into the CAPRI database.
Attachments are used to map complex quantities to boundaries. The application is
responsible for filling the required tags for the target module.

Examination of the CAPRI API may provide guidance in creating a list of functions that
should be included in the UGC geometry callbacks. CAPRI could be used as a
demonstration case to satisfy the geometry callbacks in the UGC API. Since CAPRI is
widely used, this demonstration could form the foundation of a CAPRI callback library to
be used by future developers wishing to utilize CAPRI with UGC compatible grid
generation libraries.

3.2.5 CAD Services - OMG

The Object Management Group (OMG) [16] is a consortium that produces and maintains
computer industry specifications for interoperable enterprise applications. The CAD
Services specification of the OMG was developed to define high-level engineering
interfaces for answering queries of CAD data. The interfaces are based on CORBA to
avoid the problems associated with data translation. All database queries use native CAD
system geometry kernel, and client-server operation is possible.

The CAD Services-OMG has the following features: geometry and topology queries for
manifold and non-manifold geometries, parametric regeneration of solid models, tagging
of geometric entities with application specific information, basic geometry creation,
tesselated representations of geometry, and access to assembly structure of CAD models.

Use of the CORBA ORB in the CAD Services-OMG specification can add significant
computational overhead. It may be possible to minimize the overhead by designing
interfaces to provide data in substantial quantities (coarse grain rather than fine grain).

The OMG CAD services spec could be used as a sample application of the API geometry
callbacks. This demonstration could form the foundation of an OMG callback library
compatible with the API. This library may be useful to future application developers
wishing to use the OMG CAD services spec in conjunction with UGC compatible grid
generation libraries.

3.3 Geometry/Meshing APIs
Of all the APIs reviewed, only one encompassed both geometry and mesh generation.

3.3.1 GGTK

The Geometry and Grid Toolkit (GGTK) [17] is a library of geometry modeling and grid
generation functions developed and maintained by the Enabling Technology Laboratory
of the Mechanical Engineering Department at the University of Alabama at Birmingham.
It consists of three main categories of modules. The Geometry module contains functions
for geometry creation and modification defined by NURBs curves, surfaces and volumes.
It also contains many geometric utility functions. The topology module consists of data

12

structures and functions for topological representation of geometry in terms of vertices,
edges, faces and volumes. The topological representation is used for “watertight”
geometry, which is a requirement for meshing. Finally, the grid module deals with the
generation and manipulation of various types of grids – structured and unstructured
meshes over, 2-D, surfaces and volumes. It also contains functions for curve packing,
transfinite interpolation, elliptic grid generation, grid transformations, structured grid
quality and grid interpolation.

The libraries are written in C++, and thorough documentation (formatted by Doxygen) of
all modules exists on the project website. This documentation includes the data
structures for supported element types. Availability of the software itself is unknown.

In this library, grid components are created directly on topological elements (edges, faces
and volumes), which explain the requirement for watertight representations. Geometries
can be imported from IGES files or can be constructed internally. Resulting edge,
surface and volume meshes are then exported to file in an unpublished format. Geometry
entities can also be exported in XML files.

This library represents a powerful toolkit for very specific grid generation operations.
Though the requirement of a watertight geometry is very restrictive, it does allow for
nearly automatic unstructured meshing in many cases. However, faulty or incomplete
geometry representations will need to be repaired prior to mesh construction. Also, since
the meshes are formed directly on the geometry (thereby inheriting its topology), there is
no apparent provision for controlling grid point distribution on the interiors of grid
elements (edges, surfaces, volumes). Though this effort is developing an API for
meshing (as well as an implementation thereof), its use is probably too narrow in scope
for collaboration with the GGMNS API.

3.4 Computer Science APIs
A total of five APIs pertaining to general-purpose computer science issues were
identified and reviewed. These APIs were reviewed primarily to identify modern
computer science practices, with the intent of applying some of these techniques into API
V2.

3.4.1 Standard Template Library

The Standard Template Library (STL) [18] is a generic C++ library that provides both
data structures and basic algorithms for core storage and manipulation of data. It uses the
concept of a container class to store groups of data including, but not limited to, vectors
and lists. Algorithms are available for sorting and interrogation of container objects. The
STL also provides iterator functions. The container classes and associated algorithms
appear to support multi-threading for data access, but not for data modification. STL
supports all major Unix, Linux, and Win32 platforms.

STL is a well-established generic library, and any use of it within this effort would be at
the generic data manipulation level. It would be difficult for the GGMNS effort to
influence STL’s development at all. While direct use of the powerful container and

13

iterator concepts would be difficult due to the required conversion to an ANSI C form,
their capabilities could be examined in more detail in order to identify necessary
functionality in the GGMNS API.

3.4.2 Component Object Model Technology

Component Object Model (COM) [19] is a binary standard for software object
interaction. It is developed and maintained by Microsoft, and serves as a core software
technology in Microsoft Message Queuing (MSMQ), ActiveX controls, and others. It is
primarily targeted toward Windows-based platforms, but is also available for the Unix
platforms (not as freeware) including Solaris, SGI and DEC/Compaq. The
implementation of COM is designed to use C++ functionality extensively. It appears
possible to write C wrappers and interfaces, but they would be neither clean nor trivial.

Using COM, each object or component is treated as a "black box" with strong
encapsulation. Modification and revision of modules is only allowed through the creation
of new version of the module. COM allows calls to components on different computers.

Since COM is a core Microsoft technology, it is effectively an industry standard for
Windows-based operating systems. This also makes it less useful for the GGMNS API
since the ports to Unix operating systems are less likely to be supported fully. In addition,
COM is written in C++ while the GGMNS API is implemented in C. However, COM's
use of strong encapsulation and rigorous API standards are aspects that should be
considered when defining the GGMNS API.

3.4.3 Common Component Architecture Forum

The Common Component Architecture (CCA) [20] is developed by the CCA-Forum, a
large, organized group that provides forums, meetings and voting structure for the API.
CCA is a large effort, having received $16M from the Department of Energy (DOE) over
five years. The goal of CCA is the development of a software architecture based on
software components and a set of computer-science rules which govern the interaction
between components. It is similar to CORBA or COM/DCOM but is oriented towards
high-performance computing. The major differences are the minimization of performance
overhead, support for parallel and distributed execution models, and the support of High
Performance Computing languages (C, C++, Fortran and Fortran 90). The goals of CCA
are interchangeability, promotion of reuse, and plug-and-play.

Within the framework of the CCA, a component is defined as a binary unit of
independent deployment, separated from other components with no dependence on global
data. A component interacts with the environment through interfaces call ports. A
component may either provide a port, which means that it implements the class or
subroutines of a port, or may use a port, which means that it calls methods or subroutines
in a port. A component comes with clear specifications of what ports it requires and
provides. In object-oriented languages, a port is a class or interface. In Fortran, a port is a
group of subroutines or a module.

14

Component architecture is defined as a set of standards and a framework that holds and
runs the components and provides services, which allow the components to interact with
other components. While the framework is embedded in the application, the standard
CCA services library provides most of the tools necessary to integrate the framework into
the application. These services include constructor and destructor methods, as well as a
method to tell the framework which ports it uses and provides. Each component must
explicitly publish with the framework which capabilities it provides and what
connections it requires. All component ports are defined in the Scientific Interface
Definition Language (SIDL) to provide language independence. The Babel software then
transforms the SIDL definitions into language-specific stubs.

The focus of CCA is on large-scale, or coarse, integration of components for scientific
computing. The concept of components provides modules, which are easily interlinked to
solve large scientific computing problems. The framework allows for calls to components
on different computers and is responsible for component-to-component data transfer. It
does not, however, provide a mechanism for the transfer of large data sets. The
framework does incur an overhead penalty due to the additional level of communication.
Each call takes approximately 2.7 times as long as a direct C or Fortran call. This
overhead might be too costly for fine-scale interfaces.

The CCA is a large group whose goal seems to be very similar to that of GGMNS. Their
approach and API definition are both compatible with the GGMNS API. The CCA
approach could serve as an example for GGMNS. Collaboration between CCA and
GGMNS could be useful, but it is unlikely that the GGMNS effort would be able to
influence any changes at this stage of the CCA development. Instead of collaboration, the
GGMNS API could adopt a portion of the CCA standard and keep current with that
standard.

In developing the GGMNS API, the use of SIDL for interface definitions is worth
investigating. At first glance the approach seems very complex. Most of the complexity
comes from the use of the Babel software. The advantage of the Babel software is that it
allows the interfaces to utilize Object Oriented data structures and to work between
multiple programming languages. The CCA approach entails additional overhead beyond
the UGC version 1.0 specification primarily because of the software libraries that must be
embedded into the application, to handle the SIDL/Babel interfacing and to support the
CCA framework services. This complexity may cause some to avoid the adoption of the
GGMNS API. A closer look at Babel may reveal that it could be used just to provide the
language-specific stubs, which could then be used independent of the Babel runtime
libraries.

The concept of "using" and "providing" ports would have advantages when dealing with
multiple components that perform the same function within a single application. The
downside is that the application or framework must keep track of the components and
registered ports. The CCA framework services may be able to take care of this. Inclusion
of standard software libraries in the GGMNS API would complicate delivery and
maintenance of the API. Further, questions would arise as to where the responsibility lies
for delivery and maintenance of the standard libraries (CCA).

15

3.4.4 Babel/SIDL

SIDL [21] uses the Interface Definition Language (IDL) to provide a language-
independent interface to an application. SIDL (Scientific IDL) is an extension to the IDL,
which adds support for complex numbers, dynamic multi- dimensional arrays, parallel
communication directives, enumerated types, symbol versioning, name-space
management, and object-oriented inheritance. Babel is software designed to interface
software components and provide run-time libraries.

In the SIDL/Babel framework, each API component interface is defined using SIDL, and
then Babel uses the SIDL description to generate glue code for each of the supported
programming languages. Babel consists of a SIDL parser generating intermediate XML
representations of interfaces, a code generator which reads the intermediate XML and
generates the glue code, and a small run-time support library. The SIDL/Babel
framework is responsible for component-to-component data transfer.

SIDL/Babel is maintained by a large, organized group providing forums, meetings and
voting structure for the API. Its focus is on large-scale (coarse) integration of
components for scientific computing. It employs the concept of components to provide
modules, which are easily interlinked to solve large scientific computing problems. The
concept of components is very similar to the COM and STL standards.

SIDL/Babel supports calling libraries written in C, C++, F77, Python, or Fortran90
(beta). It supports drivers written in C, C++, F77, Python, Java or Fortran90 (beta). It is
supported currently on Linux and Solaris platforms, but allows calls to components on
different computers. SIDL/Babel is freely available and licensed under the Lesser GNU
Public License. SIDL/Babel is being used by the Common Component Architecture
(CCA) effort.

There would be several advantages to employing SIDL/Babel in the GGMNS API. The
IDL is based on a well-established standard and is part of the OMG CORBA effort. Its
use may also help make interoperability with TSTT components possible. It would also
offer the ability to specify the API generically. Finally, it could be used to provide inter-
language operability for the GGMNS API.

Several disadvantages exist as well. For fine-scale operations, the overhead of the Babel
framework and required data conversions would be very costly. It is also dependent on
several supporting libraries (Java, libtool, etc.) during the build process. This introduces
an additional step in the interface development process.

3.4.5 PETSc

PETSc [22] is a suite of data structures and routines for parallel implementation of
applications solving partial differential equations. The suite includes parallel linear and
nonlinear equation solvers as well as time integrators. PETSc is divided into libraries for
manipulation of a family of objects. Each library consists of a set of calling sequences
using particular data structures. PETSc may be used in Fortran, C and C++. Interfaces are
written in C and Fortran versions are handled as wrappers around the C interfaces. The

16

Fortran wrappers are similar to the approach used in Version 1 of the UGC API, which
consisted of preprocessor directives. PETSc interface procedures could be examined for
inspiration in designing the GGMNS API.

3.5 Recommendations and Conclusions
The results of these sixteen reviews provide sufficient information to address the basic
issues raised at the beginning of this chapter. They also serve as design guidelines for the
new API.

3.5.1 Justification

The principal objective of this effort is to develop an API for general unstructured grid
generation and related tasks that will allow different grid technologies (libraries) to be
transferred easily among grid generation applications. A secondary design goal is to keep
the API lean and easy to use, in order to maximize its likelihood of adoption by others.

None of the six meshing API/library efforts identified in this task appear to meet both of
these objectives. AOMD is library of functions for describing the connectivity of a mesh,
and contains no provisions for mesh creation. FieldModel is designed for the transfer and
interpretation of field data, rather than the grid itself. GrAL is a library for storing,
querying and combining meshes, but not for generating them. Additionally, it has only
been demonstrated for 2D meshing. GTS is a library of triangular unstructured surface
mesh creation and manipulation tools. The target application for this library appears to
be the rendering of surfaces, and no volume mesh support is indicated. GGTK is a grid
and geometry library with an API of specific grid generation methods for 1-D, 2-D and 3-
D meshes. Due to the specific nature of the API, new grid methods would need to be
implemented as new API calls, a fact that makes extensibility of the software difficult to
maintain. In addition, its requirement of shared topology between grid and geometry is
too restrictive for this effort. The TSTT effort, on the other hand, appears to address
many of the design goals of this effort, though many aspects of the design (such as mesh
generation) are not yet addressed or implemented. However, TSTT is part of a much
larger effort (CCA), which limits its flexibility. In addition, TSTT may be too general for
this effort’s target audience. Its use of an interface definition language makes it complex
to the point of requiring more effort than potential API V2 developers would be willing
to invest.

3.5.2 Alternate Design Formats

The most obvious design format alternative to API V1 would be to use an object oriented
approach. Based on the programming languages used in the efforts reviewed, this would
require the use of C++ as the API environment. Along with the benefits of an object-
oriented structure, a C++ API would allow tools such as STL and generic programming
to be used for library development.

17

3.5.3 Industry Standards

Review of the existing efforts indicates that there does not appear to be a standard
programming language for analysis APIs. In fact, of the sixteen efforts reviewed, five
were written in or supported Fortran77 and Fortran90, seven supported C, and thirteen
supported 13 C++. While C++ is arguably the most modern language in general use, a
large number of existing analysis applications are written on Fortran variants, due to
legacy and efficiency considerations. These potential customers will need to be
considered when selecting the API language.

In addition, five APIs were based on language independent interfaces such as IDL, SIDL
and CORBA. While a language independent interface offers an API with potential use to
nearly all applications, it comes with significant overhead. Substantial support software
would need to be delivered with such an interface, and proper usage of the API and
support software would require a non-trivial training period. Overhead of this magnitude
would likely reduce the APIs acceptance and short-term viability in the industry.

Three of the efforts reviewed utilized the C++ concept of Standard Template Libraries.
Data structures and algorithms that this generic library provides could be quite useful for
the storage and manipulation of data.

3.5.4 Existing Components for Reuse

Several of the efforts reviewed would be good candidates for demonstration of the
resulting API V2. In these cases, functions in the existing libraries would be wrapped by
API-compliant functions. In order to create a fully compliant API V2 example, it may
even be necessary to link several of the libraries simultaneously. Alternatively, where
source code is available, the library of API V2 functions could be written based on
pertinent functions extracted directly from the code.

All five geometry APIs examined could be used as the foundation of the API-compliant
geometry functions. OPEN Cascade would be the leading candidate because of its
freeware status, but it could be possible to get a temporary no-cost license of the others
for the purpose of demonstrating its use within an API V2 library.

At least three of meshing efforts could also serve as the foundation of an API V2 meshing
library. GTS is public domain software with a limited set of unstructured grid creation
functions. GrAl source code is also freely available, and contains a number of general-
purpose tools for querying and merging mesh elements. As another example, the
Mesqute component of the TSTT effort could be used within an API V2 library for mesh
quality assessment.

3.5.5 Collaboration

As described above, the TSTT project is the only one even vaguely similar to the API V2
design effort. At first glance, in fact, it appears that it may be possible to develop a high-
level grid generation interface common to each effort. This could be done either by
making API V2 compliant with TSTT standards or by writing TSTT wrappers around the

18

API. Though the logistics of maintaining a common API would be difficult to coordinate
(different funding agencies, scopes, design goals, etc), it is nevertheless a good idea to
open a dialog with the TSTT development team. Specifically, Air Force permission to
share information of this effort with TSTT developers should be requested. This could
amount to cross-participation in meetings/teleconferences, sharing of data via password
protected web sites, and/or one-on-one visits.

4 Review of UGC API Version 1.0
The first generation of this API was developed through considerable time and effort by
members of the Unstructured Grid Consortium. It resulted in a functional programming
interface for 1, 2 and 3-D meshes. Despite the success, the consortium understood the
need for further work on the project, and asked the Air Force to commission a follow-on
development effort.

In order to insure that the original intent and strongest technical features of the API are
preserved in the design of the second generation, it was necessary to start with a detailed
review of API V1. The beginning sections of this chapter identify and present notable
features and shortcomings of API V1 based on different technical standpoints. The final
section contains a summary of those ideas and techniques of API V1 that will need to be
preserved in API V2.

4.1 Terminology
A number of terms are used repeatedly in the description of API V1.

• Application: Program that uses the API to call UGC compliant modules.

 Module: Subroutine or collection of subroutines that satisfies a single API
requirement and conforms to UGC programming rules and API specifications. A
module may call other modules.

• Specification: A list of rules that each module and call in the API must follow.

• API: A collection of well-defined calls including the routine name, and argument
list to standard UGC functions.

• Derivative application: A program that uses UGC API compliant modules to
undertake tasks in its application.

• Application developer: Makes use of a UGC API compliant module(s) in their
programs.

19

• Module developer: Constructs, designs and implements UGC API compliant
module code.

4.2 Objectives
The objective of the UGC Version 1.0 API is to define an API for the interoperability of
mesh-generation frameworks and modules. The API provides the rules and definitions for
interfaces and is intended to encourage the interchange of modules between applications.
The API is intended to work with legacy frameworks (Fortran and C) with minimal
impact to existing code. The API is designed to be simple to implement, so that the
learning curve is minimized. Lastly, API V1 does not specify a geometry package; it will
work with the geometry library chosen by the application.

4.3 Scope
The scope of the UGC Version 1.0 API covers both creation and modification of meshes,
including surface and volume mesh generation, enhancement of existing meshes,
partitioning of meshes, and the computation of metrics to allow the determination of
mesh quality. Mesh elements supported include triangles, quadrilaterals, tetrahedra,
prisms, and hexahedra. Both new and legacy code are supported and different API-
compliant modules may be used concurrently. The API aims to provide an intermediate-
level interface focused on large-scale operations; it supports the generation of surface or
volume meshes but not the creation of individual mesh nodes. The supporting geometry
API called by the parent application is intended to provide essential low-level
information, such as surface normal vector calculations. The API does not support
structured, overlapping, or hierarchical (Cartesian) meshes.

The existing API V1represents a reduction in scope from its preliminary design. The
original plans for API V1 included provisions for geometry modification and repair, as
well as additional mesh generation functionality such as quality improvement, joining
and merging, transformation and adaption, mesh format conversion, and support for mesh
types such as structured, overlapping and Cartesian meshes.

4.4 Architecture
API V1 encompasses mesh generation by dividing the operations into a series of
modules. Each module contains the definition of a single API call, and interaction
between the application and modules may only take place through API calls.
Independent modules representing the same API function are differentiated by a vendor-
specific identifier appended to the module name. Additional parameters required by
specific modules are created in a separate, API-defined store and are accessed
independently of the main API call to the module. Every API function returns a
decipherable status flag.

There are several advantages to this type of architecture. First, there is a single standard
interface. The API also permits modules to be swapped in and out of an application and
shared between multiple applications. The module naming convention will also allow

20

multiple implementations of a module to be utilized within a single process. The calling
application can manage the multiple instances of a module with any approach it chooses.
The API will be easy to implement if the modules are uniquely named. Lastly, the
provision of a separate store for additional parameters will allow extra information to be
passed without requiring alteration of the function argument lists.

There are also disadvantages to this approach: When implementing or replacing a
module, the API requirement for unique module names means that the application will
require code alteration, rather than a mere substitution of the new library. The approach
also provides no mechanism for a module to communicate what API calls it users except
through documentation. A method is needed to "register" the calls used by a library so
that the application can verify that it meets the requirements. The extra store for
additional information provides an easy way to circumvent the API structure. It may also
place additional code development burden on the application developer when changing
modules. Additionally, since the API calls must encompass a large number of
approaches, the argument lists to the functions may be very long. Lastly, it is difficult to
envision all potential uses of the API and, hence, include all needed functionality into the
API specification.

4.5 Data Structure
For data stored within the API specification, one- and two-dimensional arrays of standard
data types (character, real, integer and double) are the most complex data type permitted.
The defined UGC argument list for the modules is adequate for passing all general mesh
data typically required. Additional parameters needed by specific modules are created in
a separate store as previously mentioned.

The use of a single common argument list for a module type minimizes code alterations
and possible errors when replacing one module with another. The separate store, then,
provides the mechanism for passing extra data not encompassed by the argument lists.

A downside to this data structure is that applications not using the standard data format
will have to convert data to and from the API format. Also, since every implementation
of a module will have different requirements, many optional arguments will have to be
populated to get the full functionality of a module. This will limit the plug-and-play
benefit of the API. Finally, alteration of legacy code will be required to conform to the
API.

4.6 Memory Management
Under API V1, no dynamic resizing of arrays passed in as arguments is allowed inside a
module. For modules written in Fortran77, inadequately sized arrays necessarily cause
program termination. For languages permitting dynamic memory allocation, the module
can be written to return a quantitative request for additional memory. The concept of
work arrays is not within the scope of API V1. The only advantages of this approach are
that Fortran77 is covered, and that the application controls all accessed memory. Possible
downsides are the additional overhead of multiple function calls (to size array

21

requirements and then to allocate memory), the storage of multiple copies of data (one in
application, another in the module), and the severe coding restrictions placed on C, C++,
and Fortran 90 applications.

4.7 Fortran/C Interface
Fortran and C interfaces are differentiated in API V1 by appending "_F" or "_C" to
function names. Wrappers provide language-specific interfaces to the functions. Non-
trivial macros are employed to help in data conversion, particularly the handling of
strings. As mentioned earlier, 1D and 2D arrays of standard data types are the most
complex data type permitted.

This method has the advantage of supporting Fortran77, while still achieving basic
required functionality when using higher-level languages. It also requires only one
version of the API; the argument lists are identical for Fortran and C. Lastly, the
wrappers for each API call only need to be developed once, thereby relinquishing
application and module developers from that responsibility.

Unfortunately, this approach severely restricts the data types that may be used when
using modern programming languages such as C, C++ and Fortran 90. In addition,
wrapper implementation may be non-trivial and may differ among operating systems and
compilers. The approach also requires that a library of support tools be linked into the
application, and this library may need modification for different compilers and operating
systems.

4.8 Error/Message Handling
Errors are returned in API V1 via a mixture of API- and module-specific identification
codes. The decoded status value identifies both the API function returning the error and
the specific nature of the error. Though specific codes are reserved for common error
scenarios (e.g., out of memory), the API can also return custom error codes. This implies
that documentation for each module must be provided.

This method provides a means of identifying where an error occurred, but it does not
provide module status during execution and does not allow the interruption of an ongoing
process. Further, the compressed format of the error codes (less than zero return
warning, greater than zero returns error) is non-standard.

4.9 Geometry
API V1 specifies and requires a small set of routinely used geometry calls. For these
calls, a geometry identification key is passed to the module, which then extracts the
pertinent information. No geometric data is passed as input via the API. The geometry
API calls are very loosely coupled to the geometry library itself, with all geometric
calculations performed within the geometry library.

22

This method is general enough to be both useable and easy to implement. The lack of
required explicit geometry data keeps function argument lists short. However, the limited
subset of geometry routines may not satisfy all needs. In particular, the layer of geometry
abstraction and the inability of grid modules to access the geometry may preclude
modules that modify geometry. With this method, two integer values are used to
represent a geometric entity. Since the usage of these values is not defined, swapping of
geometry modules in an application may take significant coding. Furthermore, this
method does not cover meshing operations spanning multiple geometry entities. There is
also no way to access available topological information, no API call defined for
interrogation of geometry quality, and no mechanism for the module to register which
geometry calls it requires, nor for the application to verify that it meets all of these
requirements.

4.10 Reuse
The review of API V1 above makes it possible to identify a host of features and
properties that warrant serious consideration for reuse in API V2.

Objectives: The original objectives of API V1 were developed by a team of industry and
government organizations, and these objectives were later reiterated by the government
sponsor. As the team grows, however, it is possible that new objectives will need to be
added. One potential objective may be to provide a design that would easily allow
commercial software vendors to develop and market modules. Another may be to align
with other standards efforts.

Scope: The scope of API V2 should include API V1’s scope as a subset, and should also
include a vision of what the final scope will be. API V1 is designed at a very high level.
and should be examined to determine if the level is appropriate for V2. In addition, a
number of new functions should be defined, including support for low-level functions
(accessed many times), interaction with other disciplines (grid adaption, moving meshes,
etc.) and optimization packages. Even if the scope is not expanded in API V2, the new
API should be designed for extensibility to the envisioned final product.

Further consideration should also be given in API V2 or beyond to a few other items.
While API V1 provides a good kernel of functions for geometry handling, more complex
examples need to be developed to ascertain the geometric function’s true suitability. A set
of test scenarios for various commercial grade mesh problems should be used to identify
and help detect holes in the API.

Architecture: The overall architecture of API V1 (i.e., application separated from
modules through an API) is sound. However, methods for allowing multiple instances of
a module that don’t require functional name changes should be investigated. Also worth
exploring is the concept of data passing between application and modules via a
procedural interface rather than through complex single functions with heavily loaded
argument lists. Finally, consideration should be given to develop a way for a module to
communicate its requirements to the application, similar to the way CCA components
register their requirements to a central database.

23

Data Structure: API V1’s data structure is a reasonable choice for cell based data
formats, but consideration for edge and face based formats is also warranted. Also, to
reduce API parameter lists, ways to allow the data structure to be wrapped up in a C class
or Fortran 90 modules should be explored.

Memory Management: Support for FORTRAN77 code severely restricts memory
management. The technique of creating large work arrays for memory control helps
somewhat, but still requires unnecessary machinations of software. Dynamic memory
allocation will almost certainly be a requirement of API V2

Fortran/C Interface: Despite the limitations imposed by FORTRAN77, the ability to
mix modules and applications written in Fortran and C via wrapper libraries was
demonstrated successfully in API V1. As neither of these programming languages is
likely to diminish in importance in the next several years, this dual language support
should continue to be maintained.

Geometry: The geometry functions designed in API V1referred to curve and surfaces by
an array of 2 integer values. This ID approach simplified these functions’ argument list,
thereby reducing the effort to use them within the application and other modules. All of
the geometry maintenance became the responsibility of the modules defining the
functions. This same ID method should probably be extended to API V2. Surface
meshing will need to be extended to more than one surface at a time, however.

5 Recommendations for API Version 2.0
In the previous chapter, several features of API V1 were identified as strengths, with
several more identified as weaknesses. This information in combination with the
knowledge obtained from the related effort review makes it possible to offer
recommendations prior to the design and development of API V2.

5.1 API Namespace and Library Management
The vendor specific identifier in the API prototypes forces application developers to
modify source calls for all function calls when switching from one API-compliant library
to another. In order to eliminate this inconvenience, it is recommended that this vendor-
specific identifier be eliminated, changing function calls from
UGC_modulename_uniqueIdentifier{F|C}() to UGC_modulename().
Vendor information for a given UGC library could be passed using a
UGC_getVendorString() type API call.

It is the application’s responsibility to insure that the proper API V2-compliant library is
linked to the application. In some scenarios, an application may need to access multiple
API-compliant libraries, either serially or simultaneously. This necessitates a dynamic

24

library loading capability within the application. One such library for exactly that
purpose is the GNU-licensed software known as GLib/GModule [23].

Though software for dynamic library management will not be provided in the
distribution, functions to facilitate such management should be included in the API. The
GLib library is a logical choice for testing, certifying and demonstrating these specialized
yet important API functions.

5.2 API Programming Language
API V1 specified both Fortran and C representations of the API. It also provided header
files (UGC_bind_f_and_c) that allowed Fortran applications to link with C libraries,
and vice-versa. Though this satisfied users of mixed language applications, when coupled
with the fact that all data resided on the application side (see Section 5.3), it resulted in
unwieldy argument lists. This was further exacerbated by API V1’s support for
Fortran77, a language without dynamic memory allocation. Support for Fortran77 forced
high-level API functions to be applied twice – once to determine the amount of memory
required to perform an operation, and a second time after the memory had been allocated
on the application side. When the application itself was written in Fortran77,
recompilation was often necessary to accommodate the sizing demands of the particular
problem. These problems in combination made the usability of API V1 more a computer
science than a grid generation issue, which was obviously not the original intent.

Therefore, it is recommended that C be the programming language of API V2. This will
allow prototypes to be leaner, more easily understood and more pertinent to grid
generation issues. Though meshing libraries adhering to the API standard will be written
in C, consideration for those legacy and new applications written in other languages such
as Fortran77 and Fortran90 will still be required. To encourage this new API’s usage
among Fortran application developers, it may also be prudent to offer source code to
C/Fortran wrapper functions that allow the API to be called from within Fortran
applications. Converse to this situation is the development of an API-compliant library
whose baseline language is Fortran. In this case, mesh library developers will need to
write Fortran/C wrappers that will allow the library to be API-compliant. If time permits,
it may be possible to deliver source code (as an example or a complete wrapper library)
for this purpose.

The final API definition should be delivered via a series of C-style header files containing
API prototypes, published data structures, typedefs, macros and atomic data types (e.g.,
UGC_Int).

5.3 Data Passing
API V1uses a small number of high level functions such as UGC_MeshVolume(). In this
particular example, the entire volume mesh generation process is performed within a
single API call. This includes passing all of the boundary data into the function, and
returning all of the generated cell data back from the functions. The sheer amount of data
transfer required for such an involved operation results in very lengthy and complex

25

argument lists. All meshing applications are required to convert input data into the
published formats, and later to convert output data into the application-specific format.
In general, a meshing library will not have a need for all data returned from the function,
but will need to receive it nevertheless, resulting in unneeded work.

In API V2, the entirety of mesh data will not be required to be input and output with
every API call, but rather, will reside within the API-compliant library. Applications will
then be able to query and retrieve fine-grained mesh data on an as-needed basis. This
will make data transfer significantly easier to manage, possibly allowing data to be
retrieved directly in a format required by the receiving application. An example usage of
such an API might be as follows:

UGC_Mesh_Surface(input1,input2,...,(void **)&MeshPtr);
UGC_InquireNodes((void *)MeshPtr, (int *)&numNodes,(structure NodeData **)Nodes);
UGC_InquireCells((void *)MeshPtr, (int *)&numCells,(structure CellData **)&Cells);
UGC_Free_Ptr((void **)&MeshPtr);

In the first API call, the surface mesh is generated. Next, the node values in the mesh are
returned. After this the mesh cells are returned, and finally, the mesh data is released
from memory on the library side. Querying functions at an even lower level than this
example (such as individual nodes and cells) might also be warranted.

A demonstration of this low-level procedural data interface should also be provided. One
potential application would create a simple mesh and use querying-style API calls to
populate an existing grid format such as GrAL or AOMD.

5.4 Geometry
Generally there are only a few basic geometric functions that are required by most
meshing applications. These functions, however, tend to require considerable
infrastructure, and are often developed using more-general geometry libraries, either
commercial or public domain. Since many potential meshing libraries will be unable to
deliver the geometry engine with the library, the geometry functionality will be the
responsibility of the application. This will allow developers to deliver general meshing
libraries without having to provide the underlying geometry tools. Broadcast of the
application’s geometry functions to the meshing library will be handled via callback
function registration.

UGC_RegisterCallBack_GeomEval(surfeval) ;
UGC_RegisterCallBack_GeomProj(surfproj) ;

In this example, surfeval and surfproj are pointers to application-side functions.
The geometry callback functions should not require the entire geometry definition to be
included of its argument list. Rather, entities should be passed by opaque references or
IDs. IDs can be de-referenced to integer values or pointers, but it will be up to the
geometry functions within the application to determine the proper context.

It will also be necessary to select a geometry engine to be used for demonstration of these
features. Any number of engines should suffice, including OPEN Cascade, CAPRI, and

26

proprietary APIs used at Pointwise, Boeing and Lockheed. Though no source code will
be delivered in this demonstration, OPEN Cascade is particularly attractive because it is
open source, and can be shared among companies involved in the demonstration.

5.5 Optional Data
Two types of optional data are needed in API V2. The first of these provides for optional
functions and operations on mesh data, while the second pertains to tunable parameter
data used to control the meshing process.

While API V1 addressed the most prominent requirements of meshing, namely curve,
surface and volume mesh generation, it did not address peripheral issues such as mesh
quality assessment or adaption, for example. Handles to generic ancillary meshing
functions will need to be added to the API for those libraries that provide them.
Knowledge of these functions should be provided via querying functions in the library
that return the number of optional functions, a character-string descriptor of each
function, and a text-based description (including function prototypes) of each function.
Execution of these optional functions can then be controlled via a generic execution
function that takes the descriptor as an argument.

Another type of function desired by some meshing libraries might be a user-provided
low-level function used in a higher-level grid function. For example, certain meshing
algorithms require background meshes to provide target cell sizes at a point in physical
space. While any API V2 compliant library using such a feature would need to provide a
function for this purpose, the application may wish to provide an alternative algorithm.
For these types of functions, the alternative algorithm should be communicated to the
meshing library via callback registrations such as
UGC_RegisterCallBack_BackgroundEval(myFunction). Again, prototypes for
these special functions will need to be published for the application developer.

The second type of optional data is tunable parameter data. This corresponds to the user-
controlled input parameters to specific meshing algorithms. Though tunable parameters
reduce meshing library portability, they are required in instances where non-standard
library parameters significantly influence mesh behavior. These optional data functions
will be based on the UGC Management functions of API V1. Default values for all
parameter values should be assigned automatically, and should be the mesh library's
responsibility to insure that API functions work for the majority of cases with the default
values.

All tunable parameters available in the particular meshing library should be published via
an API function call such as UGC_GetAllOptionNames(). The meshing library should
register parameters and defaults via calls such as
UGC_SetIntOption("Param1",100,"This sets the Parameter1 value").
The meshing application should in turn be able to overwrite the default tunable values
with calls such as UGC_SetIntOption("Param1",200,NULL).
Current values of tunable parameters should be queried from the meshing application
with calls like UGC_GetIntOption("Param1",&Value,Description),

27

which will return the current parameter value along with a short description.
Consideration for a function providing a usage description should also be given, such as
UGC_GetUsageOption("Param1",UsageDescription). This optional-data framework
allows all options to be presentable in a GUI-based environment, allowing users to select
pertinent variables to be used.

6 Coordination With Other Efforts
During the course of the API development effort, several initiatives were undertaken to
coordinate with other organizations. These initiatives were designed to coordinate the
API development effort with similar activities taking place at the Department of Energy
and NASA Langley. An effort was also made to maintain communication with
developers of API V1 and with the Unstructured Grid Consortium (UGC) steering
committee.

Periodically throughout the development effort, a status update was presented to the
UGC. These briefings were given at the 2003 and 2004 annual meetings as well as
several teleconferences. These meetings were an excellent opportunity to present the API
progress and seek feedback from UGC members. In addition, access to the GGMNS
development web site was provided to the UGC steering committee. A special
teleconference was held with Bill Jones from NASA Langley to collect his feedback.
Bill was a member of the API V1 design team and has been a supporter of the UGC API
concept. Several API design decisions were made based on the feedback from these
important interactions.

Early in the GGMNS design effort, Lori Freitag Diachin of the Department of Energy
TSTT program was contacted and the TSTT and UGC API efforts were discussed.
Differences in approaches prevented direct coordination of the two efforts. The progress
of the TSTT development was monitored throughout the UGC API development.
Members of the GGMNS team joined the TSTT mailing list, and access to the GGMNS
development web site was provided to the TSTT team.

7 API Version 2.0 Design
The design of API V2 is based on a number of considerations outlined during the review
phase as well as a number discovered during the design process. This chapter discusses
the scope of the API, conventions used in the API formatting, terminology used in the
design, the basic layout of the API library, and several different ways in which the API
might be used.

28

7.1 Scope
A number of factors define the scope of API V2, including the API programming
language, the types of meshes and element types to be supported, the types of supported
data representation, and any known limitations of the API. Each of these issues is
addressed below.

7.1.1 API Programming Language

The UGC API V2 will specify C as the standard programming language. Other
programming languages such as Fortran77 and Fortran90 will be supported via wrappers.
It is up to the application and/or library developer to develop these wrappers. Example
wrappers have been provided (See Chapter 9).

7.1.2 Mesh Types

The UGC API V2 will support mesh generation for 1-D, 2-D, and 3-D unstructured finite
element type meshes.

7.1.3 Element Types

The UGC API V2 supports mesh elements that are: linear, triangular, quadrilateral,
tetrahedral, pyramid, pentahedral (prism), and hexahedral. The elements may have edges
and faces that are either linear or quadrilateral. Node numbering and arrangement of the
supported elements are detailed in Table 1.

Element Type and Description ID # Node Schematic

UGCDB_ELEMTYPE_BAR_2

Linear Edge
1

UGCDB_ELEMTYPE_BAR_3

Quadratic Edge
2

UGCDB_ELEMTYPE_TRI_3

Triangle with Linear Edges
10

29

UGCDB_ELEMTYPE_TRI_6

Triangle with Quadratic Edges
11

UGCDB_ELEMTYPE_QUAD_4

Quadrilateral with Linear Edges
12

UGCDB_ELEMTYPE_QUAD_8

Quadrilateral with Quadratic Edges
and No Interior Nodes

13

UGCDB_ELEMTYPE_QUAD_9

Quadrilateral with Quadratic Edges
and Interior Nodes

14

30

UGCDB_ELEMTYPE_TETRA_4

Tetrahedral with Linear Edges
20

UGCDB_ELEMTYPE_TETRA_10

Tetrahedral with Quadratic Edges
21

UGCDB_ELEMTYPE_PYRA_5

Pyramid with Linear Edges
22

31

UGCDB_ELEMTYPE_PYRA_14

Pyramid with Quadratic Edges
23

UGCDB_ELEMTYPE_PENTA_6

Pentahedron with Linear Edges
24

32

UGCDB_ELEMTYPE_PENTA_15

Pentahedron with Quadratic Edges
and No Interior Nodes

25

UGCDB_ELEMTYPE_PENTA_18

Pentahedron with Quadratic Edges
and Interior Nodes

26

33

UGCDB_ELEMTYPE_HEXA_8

Hexahedron with Linear Edges
27

UGCDB_ELEMTYPE_HEXA_20

Hexahedron with Quadratic Edges
and No Interior Nodes

28

UGCDB_ELEMTYPE_HEXA_27

Hexahedron with Quadratic Edges
and Interior Nodes

29

Table 1. Supported Element Types

34

7.1.4 Atomic Data Types

The UGC API V2 defines atomic data types for integers, reals, characters and Booleans.
The details of the definitions are outlined below in Table 2.

Atomic Data Type typedef Description

UGC_Int long Atomic integer; can be 32- or 64-bit

UGC_Real double Atomic floating point number; must be 64-bit

UGC_Char unsigned char Atomic 1-byte character; must be 8-bit

UGC_Boolean int
Boolean - Has two possible values:
#define UGC_FALSE (0)
#define UGC_TRUE (!UGC_FALSE)

Table 2. Atomic Data Types

7.1.5 Assumptions and Limitations

Restrictions and assumptions pertaining to geometry, topology, mesh and mesh geometry
elements are described in Section 7.3.

The topological structure of a mesh model constructed by the API functions of Section
7.4 must remain constant for the life of the model. This means that modification to the
topology may not be performed with API functions directly. Instead, the application
must make a copy of the lower-order topology and mesh elements and build a new
topological structure. An example of a modified mesh topology is a surface mesh that
has a hole added to it after perhaps an intersection with another surface. This particular
action increases the number of loops in the sheet by one, which constitutes a topology
change.

7.2 Conventions
Conventions for naming functions and error codes are described in this section.

All functions within the UGC API V2 are named according to a convention so that the
function names are easy to understand. All function names are of the form:
<prefix>_<object>_<verb>_<object/qualifiers>. A list of the currently
implemented values for the terms contained within the angled brackets (< >) is contained
in Table 1.

Term Values Descriptions

35

UGC General UGC Function

UGCDB UGC Database

UGCG UGC Geometry

UGCM UGC Mesh Function

UGCPD UGC Parameter

prefix

UGCP UGC Plugin Function

Session N/A

Entity N/A

Model N/A

Volume N/A

Shell N/A

Sheet N/A

Loop N/A

String N/A

Cell N/A

Face N/A

Edge N/A

Vertex N/A

SurfaceVertex N/A

CurveVertex N/A

Algorithm N/A

Parameter N/A

AlgorithmProperties N/A

object

ParameterProperties N/A

36

Create N/A

Inquire N/A

Delete N/A

Attach N/A

Assign N/A

Use N/A

Register N/A

Destroy N/A

Execute N/A

Remove N/A

Load N/A

verb

Unload N/A

Model N/A

Class N/A

Volume N/A

Volumes N/A

Sheet N/A

Sheets N/A

String N/A

Strings N/A

Loop N/A

Loops N/A

Vertices N/A

object/qualifiers

Vertex N/A

37

SurfaceVertices N/A

Cells N/A

Surface N/A

Faces N/A

Curve N/A

CurveVertices N/A

Edges N/A

ElemType N/A

Point N/A

TopologicalType N/A

AnySurfaceVertex In Sheet N/A

SurfaceVertices In Sheet N/A

AnyCurveVertex In String N/A

CurveVertices In String N/A

SurfaceGeometry N/A

CurveGeometry N/A

StatusDescription N/A

Algorithm N/A

Algorithms N/A

DirectMeshing N/A

AlternatePlugin N/A

Properties N/A

Parameters N/A

Key N/A

38

Keys N/A

ValueFromKey N/A

ValueToKey N/A

Plugin N/A

Table 3. Namespace Terms

A list of the error codes implemented in UGC API V2 is presented below in Table 4.

Error Code Value Description

UGCDB_STATUS_NOERRORS 0 UGC Database Function:
No Errors Occurred

UGCDB_STATUS_GENERALERROR 1 UGC Database Function:
Unspecified Error

UGCDB_STATUS_MEMORYALLOCATIONERROR 10 UGC Database Function:
Memory Allocation Error

UGCG_STATUS_NOERRORS 0 UGC Geometry Function:
No Errors Occurred

UGCG_STATUS_APPLICATION_BASE 32768
UGC Geometry Function:
Application Specific Error
Codes Start at this Value

UGCM_STATUS_NOERRORS 0 UGC Mesh Function: No
Errors Occurred

UGCM_STATUS_GENERALERROR 1 UGC Mesh Function:
Unspecified Error

UGCM_STATUS_APPLICATION_BASE 32768
UGC Mesh Function:
Application Specific Error
Codes Start at this Value

UGCPD_STATUS_NOERRORS 0 UGC Parameter Function:

39

No Errors Occurred

UGCPD_STATUS_GENERALERROR 1 UGC Parameter Function:
Unspecified Error

UGCP_STATUS_NOERRORS 0 UGC Plugin Function: No
Errors Occurred

UGCP_STATUS_GENERALERROR 1 UGC Plugin Function:
Unspecified Error

Table 4. Error Codes

7.3 Terminology
The UGC API V2 approaches generalized mesh generation by dividing its universe into
four classes of entities. At the top level are the topology entities, which establish and
maintain the manner in which mesh entities are inter-related. Mesh entities, the ultimate
product of UGC-compliant libraries, are owned by the topology entity on which they are
defined. At the lowest level are geometry entities, which provide the shape to which
individual mesh entities will be constrained. The relationships between mesh and
geometry entities, when they exist, are maintained via the mesh geometry entities. The
UGC entity hierarchy is illustrated in Figure 1.

Figure 1. UGC API V2 Entity Hierarchy

7.3.1 Mesh Topology Entities

Topological entities are those entities that provide the framework for the mesh model.
They prescribe the manner in which individual mesh components are inter-related, and
serve as the parent entities on which mesh entities are defined. Topology entities are

40

arranged in a hierarchical manner, with the model entity at the top, and the string entity at
the bottom.

Entity Description Bounds Bounded By Mesh
Elements

Model

framework for creating a
connected or logically related set
of mesh elements in 1-D, 2-D or
3-D - this is the highest level
entity

-
Volumes,
Sheets, and
Strings

Vertices

Volume connected subset of 3-D space Model Shells Cells

Shell unordered list of oriented Sheets Volume - -

Sheet
manifold subset of 3-D space that
may be supported by a Surface
and is locally deformable to a
plane

Model or
Volume Loops

Faces and
Surface
Vertices

Loop ordered list of Surface Strings Sheet - -

String
manifold subset of 3-D space that
may be supported by a Curve and
is locally deformable to a line

Model or
Loop

Vertices
(implicitly)

Edges and
Curve
Vertices

Table 5. Topology Entities

7.3.2 Mesh Entities

Mesh entities contain the actual mesh data required by the application. They are linked
directly to topology entities following the hierarchy described above. The types of mesh
elements allowed are prescribed per algorithm in the meshing library.

Entity Description Owned By

Cell computationally 3-dimensional meshing element Volume

Face computationally 2-dimensional meshing element Sheet

Edge computationally 1-dimensional meshing element String

41

Vertex computationally 0-dimensional meshing element Model

Table 6. Mesh Entities

7.3.3 Mesh Geometry Entities

Mesh geometry entities serve as the bridge between geometry and mesh entities.
Specifically, they maintain the relationship between a point’s representation on an
abstract geometric entity and its vertex position in 3-D space. Any number of curve or
surface vertices may link to the same mesh vertex (thereby providing connectivity), but a
given curve or surface vertex will always link to exactly one mesh vertex.

Entity Description Owned By

Surface
Vertex

imprint of a Vertex on a Sheet, allowing several surface
normals and surface parameters to be associated explicitly
with a single Vertex

Sheet

Curve
Vertex

imprint of a Vertex on a String, allowing several curve
tangents and curve parameters to be associated explicitly
with a single Vertex

String

Table 7. Mesh Geometry Entities

7.3.4 Geometry Entities

Three types of geometry entities are supported, corresponding to 0, 1, and 2-D parametric
shapes.

Entity Description Owned By

Surface

computationally 2-dimensional support geometry -
examples of this include:

• single biparametric CAD surface

• collection of surface mesh elements with no global
2-D parameterization

• collection of CAD surfaces with no global 2-D
parameterization

• any set of geometry that uniquely maps points in 2-
D in the parametric vicinity of the mesh to a
connected, continuous subset of 3-D space that is

Sheet

42

locally mapable to a plane

• any set of geometry that uniquely maps points in 3-
D in the vicinity of the mesh to a connected,
continuous subset of 3-D space that is locally
mapable to a plane

Curve

computationally 1-dimensional support geometry -
examples of this include:

• single parametric CAD curve

• collection of curve mesh elements with no global
1-D parameterization

• collection of CAD curves with a global 1-D
parameterization

• any set of geometry that uniquely maps points in 1-
D in the parametric vicinity of the mesh to a
connected, continuous subset of 3-D space that is
locally mapable to a line

• any set of geometry that uniquely maps points in 3-
D in the vicinity of the mesh to a connected,
continuous subset of 3-D space that is locally
mapable to a line

String

Point computationally 0-dimensional support geometry Vertex

Table 8. Geometry Entities

7.3.5 Non-Entity Abstractions

A few additional terms that are used frequently in API V2 are defined below.

Entity Description

Session lifespan of a library within an execution thread

Algorithm meshing algorithm that can be executed in the current session

Parameter
key/value pair that can be associated with mesh entities on input to
control the execution of an algorithm or on output to reflect computed
data

43

Table 9. Non-Entity Abstractions

7.4 Architecture
One of the primary design goals of API V2 was to reduce the size of the argument lists
for API functions. Since the overall amount of data required by a meshing algorithm is
not negotiable, reduced argument lists imply more API functions. This in turn suggests
that the meshing data reside in library memory, since data will need to be transferred into
memory in a piecemeal manner, and transferred back to the application in a likewise
manner. This approach differs from API V1 in the respect that API V1 transferred all
meshing data in and out of the meshing library within a single API call, essentially
allowing the mesh data to reside on the application side. The idea of maintaining the grid
within the library reduces the burden normally placed on the application developer, since
grid elements can be stored and retrieved individually from the application. This fact
removes the need for temporary array construction for the purpose of shuttling all data in
and out of the library within a single call. However, the burden is now shifted to the
library developer, who will need temporary data structures for the purpose of storing
mesh data. It also forces the library developer to write a large number of functions for
the purpose of data transfer between the application and the developer.

Another primary design goal of API V2 was to allow for serial or parallel usage of
multiple UGC libraries within a single application. However, if the memory for a grid is
resident to the library that created it, the data will not be addressable by functions from a
different UGC library. Here, the application is forced to transfer library1 data to the
application, make a copy of it and transfer the data to Library2. Besides requiring a
duplication of grid components between the two libraries, it also requires the application
to broker the transfer via repeated usage of the data transfer API functions.

For this reason a two-library architecture was selected. The first library, referred to as the
meshing library, contains a minimal set of API functions that primarily perform the
tasks associated with mesh generation. Because it is a lean set of commands, library
developers will be able to concentrate on mesh generation, rather than on populating a
large number of data transfer functions. Multiple meshing libraries can exist in an
application simultaneously. The second library is referred to as the database library,
and serves as a central data repository for all mesh data. There will never be more than
one database library in a given application.

The database library contains a larger number of functions than the meshing library, most
of which are designed for data transfer between the application, the meshing library, and
the database library. As stated earlier, development of a database library would take a
substantial effort, due to the number of functions required and the creation of data
structures for grid data. Nevertheless, the task of writing such a library is fairly
mechanical, and likely would not change considerably from one developer’s database
library instance to another’s. With this in mind, an example database library was written
under this effort, and is to be included in source code form with the UGC API V2 library
distribution (see Chapter 9). Direct use of this example database library will allow

44

library developers to create a UGC-compliant library with minimal effort, requiring
software implementations of the small set of mesh library functions only.

All of the functions defined in UGC API V2 follow the general prototype

extern UGC_Status UGC_<object>_<verb>_<object/qualifiers> (...);

where <object> refers to the type of object on which the function is applied, <verb>
refers to an action taken on the object, and <object/qualifier> refers to a qualifier
on the action.

7.4.1 Database Library

The database library is used for transfer of mesh data, assignment and query of generic
parameter data such as mesh library run-time parameters, and assignment of plugin mesh
library data. Its API is defined in a total of four header files ugc_database.h,
ugc_geometry.h, ugc_parameter.h, and ugc_plugin.h), divided for clarity
by functional classes.

7.4.1.1 Data Transfer Functions

Transfer of entities to and from the meshing library is governed by strict topological rules
defined by the entity hierarchy.

Population of the mesh database begins with the topological entities that glue the mesh
elements together. The meshing hierarchy is typically created in a top-down manner,
beginning with models, and continuing with volumes, shells, sheets, loops and strings
with the following functions:

 UGCDB_Session_Create_Model() : creates an empty model for
meshing purposes.

 UGCDB_Model_Create_Volume() : creates an empty volume for
meshing purposes.

 UGCDB_Model_Create_Sheet() : creates an empty sheet for meshing
purposes.

 UGCDB_Model_Create_String() : allows the creation of an empty
string in a model.

 UGCDB_Model_Delete() : deletes a model and all its associated data from
the session.

 UGCDB_Volume_Create_Shell() : creates a boundary shell around a
volume from an unordered list of oriented sheets.

 UGCDB_Sheet_Create_Loop() : creates a boundary loop on a sheet from
an ordered list of surface strings.

45

After topology is established, topological entities are tied to geometry with the following
commands:

 UGCDB_Sheet_Attach_Surface() : associates an abstract geometry
surface with a sheet.

 UGCDB_String_Attach_Curve() : associates an abstract geometry
curve with a string.

Another group of functions is used to create and assign vertex, face and cell mesh
elements to topological model, sheet and string elements, respectively.

 UGCDB_Model_Create_Vertices() : creates vertices in a model from
their coordinates.

 UGCDB_Volume_Create_Cells() : creates cells in a volume from the
ordered list of vertices that bound each cell.

 UGCDB_Sheet_Create_Faces() : creates faces in a sheet from the
ordered list of surface vertices that bound each face.

 UGCDB_String_Create_Edges() : creates edges in a string from the
ordered list of curve vertices that trace each edge.

Similarly, a series of functions exist for the deletion of individual mesh elements.

• UGCDB_Cell_Delete() : deletes a cell and all its associated data from the
owning volume.

• UGCDB_Face_Delete() : deletes a face and all its associated data from the
owning sheet.

• UGCDB_Edge_Delete() : deletes an edge and all its associated data from
the owning string.

• UGCDB_Vertex_Delete() : deletes a vertex and all its associated data from
the owning model.

Mesh geometry entities represent the link between mesh vertices and the geometric
entities on which they lie. Creation, deletion, and assignment of these entities to
geometry entities is controlled with the functions below:

• UGCDB_Sheet_Create_SurfaceVertices() : creates surface vertices,
associating the surface geometry of a specific sheet with some vertices in a model.

• UGCDB_SurfaceVertex_Assign_SurfaceGeometry() : assigns the
surface geometry associated with a surface vertex, allowing the position of the
surface vertex to vary over time while maintaining its identity.

46

• UGCDB_SurfaceVertex_Delete() : deletes a surface vertex and all its
associated data from the owning sheet.

 UGCDB_String_Create_CurveVertices() : creates curve vertices,
associating the curve geometry of a specific string with some vertices in a model.

 UGCDB_CurveVertex_Assign_CurveGeometry() : assigns the curve
geometry associated with a curve vertex, allowing the position of the curve vertex
to vary over time while maintaining its identity.

 UGCDB_CurveVertex_Delete() : deletes a curve vertex and all its
associated data from the owning string.

 UGCDB_Vertex_Assign_Point() : assigns the geometry associated with
a vertex, allowing the position of the vertex to vary over time while maintaining
its identity.

Typical usage of the UGC API V2 involves the building of topology and mesh elements
using the functions described above. When these entities have been established, the next
step is to use the UGC library meshing functions (described later in the section) to create
new mesh elements, followed by invoking UGC querying functions for the extraction of
newly formed meshing data. A large number of functions have been created for exactly
this purpose, that of querying information from existing topology, geometry, mesh
geometry and mesh entities. The broad set of functions described below affords the
application and library developers full access to data existing in the database library,
defined either within the application or within the library.

The first group of inquiry functions contain those used to identify the topology, mesh,
and mesh geometry entities attached to a topology entity. The following functions query
the topological hierarchy:

 UGCDB_Model_Inquire_Volumes() : finds volumes in a model.

 UGCDB_Model_Inquire_Sheets() : finds sheets in a model.

 UGCDB_Model_Inquire_Strings() : finds strings in a model.

 UGCDB_Volume_Inquire_Model() : finds the model that owns a volume.

 UGCDB_Volume_Inquire_Shells() : finds the shells that bound a
volume.

 UGCDB_Shell_Inquire_Volume() : finds the owning volume of a shell.

 UGCDB_Shell_Inquire_Sheets() : finds the unordered list of oriented
sheets in a shell.

 UGCDB_Sheet_Inquire_Model() : finds the model that owns a sheet.

47

 UGCDB_Sheet_Inquire_Shells() : finds the 0, 1, or 2 shells adjacent
to a sheet.

 UGCDB_Sheet_Inquire_Loops() : finds the loops that bound a sheet.

 UGCDB_Loop_Inquire_Sheet() : finds the owning sheet of a loop.

 UGCDB_Loop_Inquire_Strings() : finds the ordered list of surface
strings in a loop.

 UGCDB_String_Inquire_Model() : finds the owning model of a string.

 UGCDB_String_Inquire_Loops() : finds the loops radially adjacent to
a string.

Three related functions are used to identify the geometry and mesh geometry entities
linked to topological entities.

 UGCDB_Sheet_Inquire_Surface() : finds an abstract geometry surface
associated with a sheet.

 UGCDB_Sheet_Inquire_SurfaceVertices() : finds the surface
geometry of a specific sheet associated with some vertices in a model.

 UGCDB_String_Inquire_Curve() : finds an abstract geometry curve
associated with a string.

When a meshing algorithm is applied to a model, volume, sheet or string, new mesh
elements are often created. The functions below are used to retrieve mesh element data
from topological entities:

 UGCDB_Model_Inquire_Vertices() : finds vertices in a model.

 UGCDB_Volume_Inquire_Cells() : finds the cells that are contained in a
volume.

 UGCDB_Sheet_Inquire_Faces() : finds the faces that are contained in a
sheet.

 UGCDB_String_Inquire_Edges() : finds the edges that are contained in
a string.

The second group of inquiry functions contains those used to identify the topology,
geometry, and mesh entities belonging to mesh geometry entities. Mesh geometry
entities define the relationship between mesh vertices and the (multiple) surfaces on
which they are defined. Underlying topology can be determined on these entities with
two functions relating curve and surface vertices to topology.

 UGCDB_SurfaceVertex_Inquire_Sheet() : finds the owning sheet of
a surface vertex.

48

 UGCDB_CurveVertex_Inquire_String() : finds the owning string of
a curve vertex.

Similarly, geometry can be retrieved via:

 UGCDB_SurfaceVertex_Inquire_SurfaceGeometry() : finds the
surface geometry associated with a surface vertex.

 UGCDB_CurveVertex_Inquire_CurveGeometry() : finds the curve
geometry associated with a curve vertex.

Two other functions are provided to identify the relationship between mesh and mesh
geometry (vertex) entities.

 UGCDB_SurfaceVertex_Inquire_Vertex() : finds the vertex
associated with a surface vertex, if one exists.

 UGCDB_CurveVertex_Inquire_Vertex() : finds the vertex associated
with a curve vertex, if one exists.

The final group of inquiry functions includes those used to identify mesh geometry,
topology and mesh entities belonging to other mesh entities. Mesh geometry belonging
to mesh entities is determined with the following functions:

 UGCDB_Vertex_Inquire_SurfaceVertices_In_Sheet() : finds
all surface vertices from the specified sheet that are attached to the specified
vertex.

 UGCDB_Vertex_Inquire_AnySurfaceVertex_In_Sheet() : finds
any surface vertex from the specified sheet that is attached to the specified vertex.

 UGCDB_Vertex_Inquire_CurveVertices_In_String() : finds all
curve vertices from the specified string that are attached to the specified vertex.

 UGCDB_Vertex_Inquire_AnyCurveVertex_In_String() : finds
any curve vertex from the specified string that is attached to the specified vertex.

Topological entities associated with a given mesh entity can be retrieved with the four
functions below.

 UGCDB_Cell_Inquire_Volume() : finds the owning volume of a cell.

 UGCDB_Face_Inquire_Sheet() : finds the owning sheet of a face.

 UGCDB_Edge_Inquire_String() : finds the owning string of an edge.

 UGCDB_Vertex_Inquire_Model() : finds the owning model of a vertex.

Finally, the relationships between higher-order mesh elements (edges, faces and cells)
and their low-order elements (vertices) are defined by:

49

 UGCDB_Cell_Inquire_Vertices() : finds the ordered list of vertices
that define a cell.

 UGCDB_Face_Inquire_SurfaceVertices() : finds the ordered list of
surface vertices that define a face.

 UGCDB_Edge_Inquire_CurveVertices() : finds the ordered list of
curve vertices that define an edge.

 UGCDB_Vertex_Inquire_Point() : finds the model space coordinates
of a vertex.

 UGCDB_Cell_Inquire_ElemType() : finds the type of a cell.

 UGCDB_Face_Inquire_ElemType() : finds the type of a face.

 UGCDB_Edge_Inquire_ElemType() : finds the type of an edge.

 UGCDB_Vertex_Inquire_TopologicalType() : finds the topological
type of a vertex.

Note that in combination with UGCDB_CurveVertex_Inquire_Vertex() and
UGCDB_SurfaceVertex_Inquire_Vertex(), this set of functions provides direct access to
all pertinent mesh data.

For completeness sake, a couple of generic querying functions are also provided.

 UGCDB_Entity_Inquire_Class() : finds the class of an entity.

 UGCDB_Session_Inquire_VendorDescription() : finds a
description of the vendor of the current library.

7.4.1.2 Parameter Data Functions

 Included in the database library API are four functions for the establishment and
querying of generic data. Each of these functions uses a UGCPD_ prefix, identifying it
from the standard database functions that access/store data for a specific purpose. The
parameter data allows any addressable entity to have a key-value pair associated with it,
where the key is a character string and the value is either a Boolean, integer, real, enum
or character string. The key is used to identify the parameter to be assigned, and the
value is what it is assigned.

 UGCPD_Entity_Assign_ValueToKey() : assigns a value corresponding
to a key for a parameter associated with the specified entity.

 UGCPD_Entity_Inquire_Keys() : finds all the keys currently
associated with the specified entity.

50

 UGCPD_Entity_Inquire_ValueFromKey() : finds a value
corresponding to a key for a parameter associated with the specified entity.

 UGCPD_Entity_Remove_Key() : removes a key/value pair from the
specified entity.

The parameter data functions may be used for any conceivable purpose required by the
application or the meshing library, with all parameter data stored within the database
library memory.

One important use of parameter data is for the establishment and maintenance of tunable
data communicated to the meshing library upon execution of meshing algorithms. An
algorithm within a meshing library must advertise all of its tunable parameters via
functions described with the meshing library functions (Section 7.4.2). Each tunable
parameter is given a character-string name and returns a data structure containing
information such as the parameter variable type and its range of valid values. When the
meshing algorithm is executed, it will search database memory for parameter keys
matching the tunable parameters associated with the algorithm. Where a match is found,
the meshing algorithm bypasses its default value, using instead the value assigned to the
parameter. It is the responsibility of the application developer to assign character strings
to parameter keys that are identical to those required by the specific algorithm.

7.4.1.3 Plugin Library Functions

The ability to access multiple meshing libraries simultaneously requires a mechanism for
differentiating between functions of the same name in separate libraries. Though
algorithms satisfying this capability are not specified nor recommended within the API, a
sample implementation using the GLib library is provided in Section 9.6.4. This sample
implements the two functions below:

 UGCP_Session_Load_Plugin() : loads a plugin instance of a UGC library
into a structure allowing access to a specific instance of every UGC function.

 UGCP_Session_Unload_Plugin() : unloads a plugin instance of a UGC
library.

The UGCP_Session_Load_Plugin() function passes in the name and location of
the UGC-compliant meshing library to use. Passed back is a data structure containing
pointers to all functions offered within that library. With this data structure, applications
may access functions from specific libraries by prefacing the call with the data structure
variable assigned to that library. A more detailed description of this feature’s usage is
offered in Section 7.5.5.

7.4.1.4 Geometry Handling

Most curve and surface meshing algorithms allow the meshes they generate to be
constrained to geometry, defined either by spline representations such as NURBs or by
discrete data such as triangular surfaces. While the extent of the geometry functions

51

required to construct these meshes is fairly small, there is usually considerable
infrastructure required in support of these functions, and they are often part of larger,
more comprehensive libraries such as proprietary CAD packages. This fact makes the
likelihood of a meshing library with geometry support rather unlikely.

Therefore, the UGC meshing library specification does not require geometry
functionality as part of the API. Rather, geometry functions are passed into the meshing
library via function pointers specified by the application. This permits the application
developer to insert the preferred/available geometry engine into the application, leaving
him/her to concentrate on meshing algorithms rather than geometry issues.

Application-specific geometry functions are communicated to the meshing library
through the UGCDB_Sheet_Attach_Surface() and
UGCDB_String_Attach_Curve() functions. These functions are also used to
assign geometry itself to the surfaces and strings. These functions take sheet and string
entities as input, implying that is possible to specify the geometry functions at the
individual entity level. Central to these functions are the UGCG_Surface and
UGCG_Curve structures, each containing pointers to pertinent geometry functions as
well as an opaque pointer into the application-specific structures/arrays for geometry
storage. It is the application’s responsibility to insure that these opaque values assigned to
the sheet/string entities can be dereferenced into meaningful identifiers within the
supplied geometry functions. By attaching the UGCG_Surface or UGCG_Curve
structures to the sheet/string, the user is specifying the geometric entities to which the
meshes will be constrained, and also the functions required to process those entities.

 For surface meshing, functions for surface evaluation (determine a point’s physical
location from its parametric coordinates) and projection (snap a point onto a geometric
entity) may be specified. Note that there is no assumption made regarding the method of
projection or evaluation employed. For curve meshing, both evaluation and projection
function pointers may be specified. A third function may be specified that will evaluate a
1-D point on a curve into a 2-D point on the surface adjacent to the input curve.

Geometry is linked to mesh elements (specifically, vertices) via the SurfaceVertex
and CurveVertex mesh geometry entities, each of which will contain a
UGCG_SurfaceGeometry_s and UGCG_CurveGeometry_s data structure,
respectively. Surface vertices are defined by a surface (generally a more-specific
subsurface than the abstract surface assigned to the sheet), a 2-D location in parametric
space, partial derivative values in each of the parametric directions, a unit surface normal,
and values pertaining to the minimum and maximum curvatures of the point on the
surface. Curve vertices are defined by a smaller data set, including a subcurve, a 1-D
location in parameter space, a partial derivative in the parametric direction, a unit normal
pointing towards the center of curvature, and the curvature at the point.

7.4.2 Meshing Library

The meshing library is used to query the capabilities and parameters of the library, to
apply optional meshing functionality, and to execute the meshing algorithms offered in

52

the library. It is an intentionally leaner API than the database library, providing potential
library developers with a quick and straightforward route to UGC compliance. Its
functions are defined within a single header file, ugc_mesh.h.

7.4.2.1 Querying Functions

A suitable meshing library API will minimally require functions for the generation of
curve, surface and/or volume meshes. Support for even these minimal mesh generation
functions is complicated by the fact that most methods rely on carefully tuned run-time
parameters. Further, more advanced meshing libraries may have the ability to perform
peripheral tasks such as adaption, quality measuring, and decimation. Rather than
attempt to encapsulate all foreseeable tunable parameters and peripheral mesh operations,
the meshing library API is designed in a way that allows for generality and extensibility.

Since the tunable parameters and peripheral functions are not specified by the API, it is
the responsibility of the meshing library to publish its entire set of capabilities. While
separate documentation of the meshing library is highly encouraged, broadcast of the
library’s features will be procedural as well

Three session-level functions are provided for basic information about the particular
meshing library.

 UGCM_Session_Inquire_VendorDescription() : finds a description of
the vendor of the current library, as well as the vendor of its database library for
direct meshing purposes.

 UGCM_Session_Inquire_StatusDescription() : finds a description of
a status value in the current session.

 UGCM_Session_Inquire_Algorithms() : finds the algorithms
supported by the current session.

The first of these functions provides the application developer with a minimal idea of the
library’s origin and possibly version number. The second is used to translate the meshing
library’s error codes into text descriptions. The last of these three functions is used to
alert the application of all available algorithms. While no specific guidelines for the
algorithm names are prescribed in the API, the algorithms should be given self-
descriptive names inasmuch as is possible.

Five more functions are provided to assess the list of tunable parameters available for a
given algorithm.

 UGCM_Algorithm_Inquire_Parameters() : finds the names of the
input and output parameters for the given algorithm, possibly limited to a specific
entity.

 UGCM_Algorithm_Inquire_Properties() : finds the properties of a
specific algorithm.

53

 UGCM_AlgorithmProperties_Destroy() : destructor for a
UGCM_AlgorithmProperties structure.

 UGCM_Parameter_Inquire_Properties() : finds the set of allowable
values corresponding to a key for an optional parameter on the specified entity.

 UGCM_ParameterProperties_Destroy() : destructor for a
UGCM_ParameterProperties structure.

 UGCM_Algorithm_Inquire_Parameters()returns a character-string list
of the parameters that are associated with a given algorithm.

UGCM_Parameter_Inquire_Properties() returns the properties associated
with a given parameter. These properties include a list of supported entity classes, the
data type of the parameter, its default value, and the range of valid values (or a list of
enum values). In order for an application to modify the current value of a given
parameter, the functions described previously in Section 7.4.1.2 must be employed,
using key values exactly equal to the parameter text string to be modified.

UGCM_Algorithm_Inquire_Properties() is used to find all of the properties
associated with an algorithm. A property lists the supported entity classes that can be
passed to the algorithm, which geometry functions need to be defined prior to algorithm
usage, the extent of surface information required, and the types of elements required for
input and output.

7.4.2.2 Option Functions

There are two optionally supported features of the meshing library API that may enabled
via function calls.

 UGCM_Algorithm_Register_AlternatePlugin() : registers, in a
meshing library, an alternate plugin to use for a specific meshing algorithm.

 UGCM_Session_Use_DirectMeshing() : tells the current meshing library
that the database library uses the same internal representation and can bypass the
formal UGCDB_ interface for optimization purposes.

The first of these functions, described in more detail in Section 7.5.5, will return a value
of UGCM_STATUS_UNSUPPORTED if alternate plugins are not available in the library.
Likewise, the second function, described in more detail in Section 0, will return a value
of UGCM_STATUS_UNSUPPORTED if direct meshing is not available in the library.

7.4.2.3 Execution Functions

A single function is used to execute an algorithm available in the meshing library.

 UGCM_Entity_Execute_Algorithm() : executes a meshing algorithm on
a entity in the current database.

54

This function requires an entity and algorithm as input, at which time the algorithm will
be executed subject to the algorithm parameter settings assigned by the application.

7.5 Usage Scenarios
The dual library layout and the specialized functions described above allow the UGC API
to be used in a variety of different scenarios. The more important of these methods are
outlined in this section, in order of increasing complexity. The first three involve
integration of a single meshing library into the user’s application. These are expected to
be the most prevalent library applications, particularly for new users. Two multiple
meshing library applications are also covered.

7.5.1 Meshing Library Only

The simplest conceptual means of employing the UGC API is to build an application
around an existing meshing library. This approach is illustrated in Figure 2.

Figure 2. Meshing Library Only

Here, the user develops functions that serve as entry points into the meshing library API.
Though these functions must adhere to the database library API protocol, they do not
reside within a standalone database library. Instead, they are integrated directly into the
application. One advantage of this approach is that the mesh data transfer functions
(database library API emulations) directly transfer data to and from the application data
structures. This can reduce the number of local copies of the data but may be impractical
if the application data structures differ greatly from the UGC model data format. This
direct approach requires the greatest amount of work on the part of the developer since
he/she must develop code that implements all of the database library functions

55

7.5.2 Database and Meshing Libraries

A second approach is to implement the data transfer functions (database library API) in a
standalone module, separate from the application and the meshing library, as illustrated in
Figure 3. The database library serves as a mesh repository that brokers the transfer of
mesh data between the application and the meshing library. In this approach, mesh data is
accessed directly only by database library functions, with both the application and mesh
libraries accessing mesh data indirectly through the database library API. This
arrangement will likely prove to be the most popular, since it allows application
developers to bypass significant effort by employing existing database and meshing
modules. However, this scenario also results in the greatest amount of redundant data,
since copies of grid entities may exist in the application, database, and mesh libraries
simultaneously.

In order to encourage and stimulate UGC API usage among its target audience, a publicly
available database library has been developed for dissemination in source code form (see
Chapter 9). The database module approach is well suited to developers retrofitting
existing software, and will provide a robust starting point for subsequent customized
versions of the UGC database library.

Figure 3. Database and Meshing Libraries

7.5.3 Database and Meshing Libraries with Direct Meshing

To eliminate the data duplication problem inherent in the previous approach, a special
function has been incorporated into the meshing library API that provides for direct
access of the mesh data stored in database library memory. Proper use of this function,
UGCM_Session_Use_DirectMeshing(), is dependent on the meshing library
being fully aware of the internal data format employed by the particular database library
to which it is linked. As such, it is not intended for general usage, but rather only for
those applications for which duplication of memory is not an option.

The utility of this approach, referred to as Direct Meshing, is best illustrated by example
Figure 4. Consider a scenario where a database library holds all mesh data, and a

56

meshing library is used to create a volume mesh, perform a mesh quality analysis and
then adapt the mesh. Large dataset transfer is required at least three times, once for the
transfer of the surface grid data to the meshing module, once for transfer of the volume
data from the meshing library back to the database module, and one additional transfer
(adapted mesh) of the volume mesh from the meshing to the database library. Now
consider the same library arrangement with direct meshing. Here, the meshing library
would work directly on the surface grid datasets residing in the database modules, and
would directly populate the database library with the volume mesh, both originally and
during the adaptive sweep. In this case, no superfluous transfer of data is required,
thereby reducing memory usage and increasing throughput.

Figure 4. Database and Meshing Library with Direct Meshing

The ability for a database and meshing library pair to communicate on a direct access
level is dependent on the meshing library’s full knowledge of the particular database
library’s data storage format. Since the actual format is not part of the API specification
(though an example implementation is offered), successful usage of this technique within
the meshing module likely requires source code access to the database module to which it
is tied.

The API specification mandates that all meshing libraries support the normal transfer
mode, whereby all mesh data is transferred via database function calls. This mandate
guarantees that meshing libraries will be truly interchangeable. As a specification for
direct meshing support, each function must possess special coding that bypasses the
formalized API calls, instead working directly on the database library data, ostensibly
controlled by conditional statements. Example code using direct meshing is provided in
the Users Manual.

Application developers may query a given mesh library via the
UGCM_Use_Direct_Meshing() function to determine whether or not direct
meshing support is available. A returned value of UGCM_STATUS_UNSUPPORTED
indicates that direct meshing is not supported. If UGCM_STATUS_NOERRORS is
returned, the developer must then insure that the meshing library employed is compatible
with the database library in use. This is done by extracting vendor identification strings

57

from each library and comparing. UGCDB_Session_Inquire_Description()
will return the database library identifier, and
UGCM_Session_Inquire_Description() will return the meshing library
identifier and the identifier of the database library it was linked against. If the two
database strings appear to be compatible, it may be permissible to use direct meshing.
The application developer should also consult the meshing library documentation to
determine compatibility with the database library.

7.5.4 Database and Multiple Meshing Libraries

One of the primary benefits of the UGC API is that it provides the application developer
with access to a wide assortment of mesh generation tools and capabilities. In many
instances, these tools will be obtained eclectically, leaving the application developer with
multiple instances of UGC-compliant meshing libraries. Concurrent or serial usage of
multiple meshing libraries within a single application is illustrated in Figure 5. The
developer’s need for multiple library access can arise when one library does not support
all of the needed capabilities required by the application, or when the developer wishes to
combine capabilities across libraries. For example, Library 1 may be used for curve and
surface meshing while Library 2 is used for volume meshing.

Figure 5. Database and Multiple Meshing Libraries

Such a capability allows a process to be customized from algorithms in multiple libraries.
The application developer is tasked with ensuring compatibility between the meshing
libraries, however. For instance, in the previous example, if the volume mesh in Library
2 requires triangular faces as input, the application must ensure that the surface methods
employed in Library 1 will indeed create triangular elements. This can be determined
with the UGCM_Algorithm_Properties() API function.

Multiple meshing libraries are maintained via the UGCP_Session_Load_Plugin()
and UGCP_Session_Unload_Plugin() functions. To load a particular dynamic
library, the name and location of the shared object (.so or .dll, typically) is input, and

58

returned is a UGCM_Plugin_s data structure containing pointers to all meshing library
API functions. The application can then call these functions directly. For example, if
surface meshing is required from Library1 and volume meshing is required from
Library2, calls similar to MeshLib1->UGCM_Entity_Execute_Algorithm(entity,
“surface mesh”) and MeshLib2->UGCM_Entity_Execute_Algorithm(entity,
“volume mesh”) would be made. The UGCP_Session_Unload__Plugin() is
then called when the particular mesh model is no longer required.

A publicly available plugin library has been developed for dissemination in source code
form (see Chapter 9). It manages multiple instances of functions using the publicly
available GLib library.

7.5.5 Database and Meshing Libraries with Alternate Plugins

In the previous scenario, multiple meshing libraries act independently in the sense that
each is unaware of the other, with all code flow control maintained by the application. In
general, however, it may be necessary for algorithms in one library to access methods
present in another.

In this situation, each library acts as an application with respect to the other library. For
instance, the volume mesh generation algorithm in Library 2 may regenerate a portion of
the surface mesh during the generation of the volume mesh. Due to limitations or
personal preference, the application developer may desire the surface meshing called in
Library 1 to be performed by the algorithm in Library 2. The necessary library
relationships for this situation are represented schematically in Figure 6.

Figure 6. Database and Multiple Meshing Libraries with Alternate Plugins

The UGCM_Algorithm_Register_AlternatePlugin() API function is used to
specify that alternate functions be used for certain algorithmic applications. Suppose that
Library1 is used for volume meshing, but would like to use a surface-meshing tool within
Library2 as part of its volume mesh generation process. The application first loads

59

Library2 as a plugin module via
UGCP_Session_Load_Plugin(“/usr/lib/lib2.so”,&Lib2). This creates a
series of handles to the API functions within Library2. Next the application identifies the
algorithm (e.g., SurfAlg2) from Library2 to be used within Library1 whenever its
volume mesh algorithm (e.g., VolAlg1) is called, and registers it via
UGCM_Algorithm_Register_AlternatePlugin(“VolAlg1”,”SurfAlg2”,Lib2).
If Library1 does not support alternate plugins, UGCM_STATUS_UNSUPPORTED will be
returned. Now, when UGCM_Entity_Execute_Algorithm(Entity,“VolAlg1”) is
called within the application, Library1 will in turn call Lib2-
>UGCM_Entity_Execute_Algorithm(Entity,“SurfAlg2”) for surface meshing
in place of its own algorithms. As in previous scenarios, it is the application’s
responsibility to insure that the algorithms assigned via alternate plugins are compatible
with the primary algorithms with regard to element types.

7.5.6 Others

All combinations of multiple mesh libraries, direct meshing and alternate plugins are also
supported in the API, though they will not be described explicitly. These include:

• Mesh library with direct meshing and alternate plugins

• Multiple mesh libraries with direct meshing

• Multiple mesh libraries with alternate plugins

• Multiple mesh libraries with direct meshing and alternate plugins

8 Demonstration
The feasibility and utility of the API V2 design is demonstrated in this chapter through
simple and complex examples. First, several individual API features are demonstrated
via pseudo-code intended to illustrate their usage. In a considerably more complex
example, an API V2-compliant meshing library was integrated into two separate API V2-
compliant applications. Both the meshing library and the applications in this latter
example were converted from separate proprietary mesh generation packages.

8.1 Feature Demonstration
During the two-year design and development of UGC API V2, it was sometimes
necessary to develop pseudo-code examples of particular features. These examples were
helpful for the contract investigators to explain specific feature implementations to the
design team. These files were retained and updated regularly to reflect interim design
changes, and the collection of these code examples are distributed with the User Manual.

60

Features demonstrated include geometry-constrained surface meshing, dynamic library
maintenance via the plugin functions, and example usage of direct meshing.

8.2 Integration Into Existing Applications
Several demonstrations were performed to investigate the usability and efficiency of the
API design when implemented in a legacy mesh generation application and library.
These demonstrations included unstructured surface mesh generation on various types of
geometry surfaces including: a single parametric surface, multiple parametric surfaces,
and a periodic parametric surface. Surface meshes of various sizes were generated to test
the efficiency on large meshes. The ability to interchange a mesh library between two
separate conforming applications was demonstrated along with the ability to swap
libraries during execution using the UGC plug-in facility.

To perform these demonstrations, two existing mesh generation applications and an
existing mesh generation library were converted. The purpose of these demonstrations
were to test the efficacy of the API specification, document the process for modifying
existing code, measure the amount of labor involved in implementing the specification,
measure the overhead in using the API, and demonstrate that the API could be used in a
production mesh generation tool.

8.2.1 Database Library Development

The largest single coding effort in this demonstration was the development of a database
library, due primarily to the sheer number of functions to be implemented, and to the fact
that new data structures needed to be devised. Once this library was completed and
validated, however, it became apparent that it would be of use to a potentially large
number of mesh library developers, particularly those whose needs are within the scope
of the API V2 effort. The decision to deliver this sample database library with the
standard API V3 distribution was made shortly thereafter. Detail regarding this utility
library may be obtained in Section 9.6.2.

8.2.2 Fortran Wrapper Library Development

The MADCAP mesh generator (See Section 8.2.4) is written in the Fortran 90 (F90)
programming language while the UGC API is based on the C programming language.
The application developer is responsible to make sure his application communicates
properly with the API specification. In this instance, the application developer must
implement a method for communicating between the Fortran and C languages. One
approach is to write a C interface that wraps around the API function call to provide
inter-language communication. The wrapper function must handle all of the necessary
conversions between languages. This approach was taken to develop a library of Fortran
to C wrappers for all UGC database and meshing API functions. A general approach
was taken to develop the wrapper library that would work with a wide range of compiler
and machine architectures.

The success of this library during this demonstration forged the plan to deliver the library
as part of the API V2 distribution. This library, explained in more detail in Section 9.6.3,

61

allows developers to use the UGC library within a Fortran application simply by
compiling and linking the library and by calling API functions within the application by
their translated form.

8.2.3 Mesh Library Conversion

For this demonstration, the Advancing Front with Local Reconnection (AFLR) library
was modified to conform to the UGC specification for mesh libraries. The AFLR library
performs two- and three-dimensional unstructured mesh generation and was written by
David Marcum at Mississippi State University [24]. Only the surface mesh algorithm
was implemented for this demonstration. This effort consisted of implementing the 10
UGC meshing API functions, and developing functions to retrieve the boundary loop(s)
from the database and load the resulting surface mesh back into the database. All of the
necessary modifications were isolated to an interface on top of the ALFR library and are
contained in the files AFLR_UGCInterface.c and AFLR_UGCLib.c provided with
the distribution.

A UGC compliant library is required to implement all 10 of the UGC Meshing functions.
Most of these functions return information about the library in the form of text strings.
Information about library capabilities, input expectations, and resulting output data can
all be retrieved through these interfaces. For this demonstration, the UGC compliant
meshing library capability was limited to the generation of triangular surface meshes on
parametric geometry. The limited scope reduced the development effort by only
requiring information about one algorithm to be returned in the UGC meshing functions.
The AFLR library implementation of the UGC meshing functions can be found in the file
AFLR_UGCLib.c file in the distribution.

Most of the meshing library implementation work is contained in the function
UGCM_Execute_Algorithm (see the file AFLR_UGCLib.c). This function checks
the algorithm that is requested against available algorithms in the library. It then
retrieves the appropriate data from the database for transfer to the AFLR library. For the
ALFR surface meshing algorithm, the UGCM_Execute_Algorithm function checks to
see that the input sheet is available in the database. It also ensures that the input sheet
contains one or more loops (closed collection of strings) and a geometry surface. If the
appropriate data is available, then the boundary loops are retrieved from the database,
reformatted to the AFLR library data format and loaded into the AFLR data structures. A
separate function internal to the AFLR interface library was written to retrieve the
boundary loop data from the database and reformat it to the AFLR library format. This
function is called Get_Loops_From_DB and can be found in the file
AFLR_UGCInterface.c. Once the boundary loops have been retrieved, the
information is passed onto the AFLR surface-meshing library.

After the AFLR library completes the surface mesh generation, the resulting surface
mesh is converted from the AFLR data structures to a format compatible with the UGC
database. The surface mesh is then transferred into the database and the mesh memory is
freed from the AFLR data structures. The surface mesh is translated from AFLR to the

62

database in the function Put_Surface_In_DB that can be found in the file
AFLR_UGCInterface.c.

In addition to the implementation of the UGCM interfaces, the AFLR library was also
modified to conform to the UGC specification for access to geometry. All references to
the geometry surface inside the library were modified to use the geometry callback
functions. Two different geometry functions are called by AFLR, one to project to a
surface (physical space to parametric space), and another to evaluate a location on a
surface (parametric space to physical space). These were modified to use the
GeometrySurface->Surface_Project and GeometrySurface-
>Surface_Evaluate callback functions.

8.2.4 Application Conversion and Demonstration

For this demonstration, two mesh generation applications were modified to conform to
the UGC API V2 specifications. Example source code passages for the implementation
of API V2 into these applications are provided in the Users Manual.

The first application, Modular Aerodynamic Computational Analysis Process
(MADCAP), is a production tool for structured/unstructured multi-block and overlapping
mesh generation [25]. MADCAP was developed by the Boeing Military Aircraft and
Missile Systems organization. The second application, Advanced Pre- and Post-
processing Toolkit (APPT), is also a production tool developed for
structured/unstructured multi-block mesh generation [26]. APPT was developed by the
Boeing Space Systems organization. MADCAP and APPT share many of the same
underlying meshing libraries. Integration of the UGC API into these two tools enhances
their ability to share future meshing libraries with less development effort.

8.2.4.1 MADCAP

Most of the modifications to make MADCAP a UGC compliant application are contained
within the UGC2D_Interface subroutine, found in the UGC2D_Interface.f90
file. This subroutine performs the following steps:

1. Query library to ensure compatibility

2. Initialize the mesh model in the database.

3. Translate input data to UGC format and load into database.

4. Generate mesh

5. Extract data from database and translate to MADCAP format.

The UGC Fortran wrapper and UGC Fortran 90 libraries were used in the
implementation. It is difficult to estimate the effort that was involved in API
implementation. The MADCAP implementation was used as a test bed for the API as it
was being developed, and hence underwent several revisions during the course of the
study. In addition, the database library and Fortran wrapper libraries were being

63

tested/debugged simultaneously with the MADCAP UGC compliant development. Now
that the database and Fortran libraries are in hand, a fresh implementation in MADCAP
would probably require a few days effort. This implementation was relatively limited
(surface meshing only with a known library). It is expected that a general
implementation would require slightly more time to implement.

One of the biggest challenges encountered in the implementation was converting the
mesh edge and face elements back to a format usable by MADCAP. The face and edge
elements returned by the database reference surface and curve vertices through their
UGCDB_ID handle. The MADCAP data format references face vertices through their
index in the vertex list. Efficient conversion from the database handle to the vertex
index required development of hash table. A Fortran 90 module to develop and maintain
the hash table was written to perform this task. The source code for the hash table
software is in the file HashTable.f90.

Several test cases were run with the UGC API compliant version of MADCAP. These
cases were used to test the API under various scenarios including generation of a single
sheet and generation of a mesh model with multiple sheets. The resulting surface
meshes for these cases are shown in Figure 7 and Figure 8. The overhead of the API and
database were measured by computing a dense mesh on a single surface. The resulting
surface mesh contained 19,850 faces and is shown in Figure 9. An even finer mesh with
125,184 faces was also computed. The computation times and memory usage was
compared with the non-compliant version of MADCAP and is shown in Table 10.

Test Case # Faces MADCAP Version Memory Usage Computation Time (sec)

Original NA NA Single Sheet 51
UGC Compliant NA NA
Original Multi-Sheet
UGC Compliant
Original 1.78 Single Sheet

Fine 1
19,850

UGC Compliant 1.51
Original 6.82 Single Sheet

Fine 2
125,184

UGC Compliant 7.02

Table 10. Comparison of Original and UGC Compliant Application (MADCAP)

An indication of the overhead associated with the UGC API implementation in
MADCAP can be obtained from the data in Table 2. There is a slight computational
overhead associated with the use of the API. The memory overhead is more significant
and varies with the grid size.

64

Figure 7. Single Sheet Mesh Comparison in MADCAP

Figure 8. Multi-Sheet Demonstration in MADCAP

65

Figure 9. Dense Single Sheet Demonstration in MADCAP

8.2.4.2 APPT

To demonstrate the ability to share a UGC compliant library between two different
meshing applications, the UGC compliant AFLR library was linked with the APPT
meshing application. The API implementation paralleled that for MADCAP. In
particular, the C++ function UGC_aflr2d_interface_CPP initialized the mesh
model in the database, translated input data to UGC format, loaded the data into the
database and generated the surface mesh. Once the mesh was generated,
UGC_aflr2d_interface_CPP called the function unload_ugcdbmodel to
extract the mesh from the database and convert it to a format useable by APPT. A
working version of this interface was generated, tested and documented in less than 120
man hours. Of the 120 hours, roughly 16 hours were spent studying the documentation
and mapping out a strategy. Eighty hours were spent programming and debugging. The
remainder was spent testing and documenting. Programming time encompassed
development of UGC_aflr2d_interface_CPP, unload_ugcdbmodel,
peripheral hash table functions (preliminary versions) as well as modification to the
calling functions within APPT. The geometry evaluators and projectors used in APPT are
C versions of the analogous geometry evaluators and projectors used in MADCAP.
Writing wrappers around the APPT C evaluators and projectors was straightforward. The
MADCAP FORTRAN implementation was available as a starting point, and expert
consultation from Todd Michal was provided on an as-needed basis (roughly 3-4 hrs).
The APPT implementation is basic and does not include the plug-in facility or parameter
passing utilities although these improvements should be straightforward.

66

A variety of sample surface meshes were generated using the APPT UGC API to the
AFLR library. These demonstrations are illustrated in Figure 10 through Figure 13.

Figure 10. Multi-Sheet Dmonstration in APPT

67

Figure 11. Close-up of Multi-Sheet Demonstration in APPT

Figure 12. Singular Surface Demonstration in APPT

68

Figure 13. Periodic Surface Demonstration in APPT

The UGC plug-in facility was demonstrated by making two copies of the AFLR UGC
compliant library. A simple write statement was added to each library to verify which
library was running. The MADCAP application was rebuilt including the GLib libraries
and UGC plug-in functions. The application was modified to load library 1 as the plug-
in and a surface mesh was generated. Library 2 was then registered as the plug-in and a
second surface mesh was generated. The corresponding write messages were used to
verify that library 1 and library 2 were dynamically swapped during program execution.

9 Deliverables
For the sake of clarity, each of the subject contract deliverables is discussed in this
chapter, with explanations of how and when these required items were satisfied.
Additional non-required software items packaged with the deliverables are discussed as
well. It is expected that these additional software utilities will immediately increase the
viability of API V2 as a standard.

69

9.1 Data Item A001 - Final Report
The Statement of Work proposed for this effort, included by reference in the executed
contract stipulates that two particular items be included in this Final Report.

First, a review of other standards efforts in the area of geometry and meshing relative to
the scope of API V1 and relative to accepted computer science practices was to be
carried out and included in this final report. These reviews are documented in Chapters 3
and 4.

Secondly, demonstration and documentation of API V2 integrated into an existing
application and meshing library was to be included in the Final Report. Two separate
demonstrations of this type were conducted and are documented in Section 8.2.4.

9.2 Data Item A002 – Contractor’s Billing Voucher
As required in Data Item A002 of this contract, Contract Billing Vouchers were
submitted on a monthly basis to the following agencies: ADMN/ACO, AFRL/CO,
AFRL/VAAC, and AFRL/VAF.

9.3 Data Item A003 – Funds and Man-Hour Expenditure
Report

As required in Data Item A003 of this contract, Funds and Man-Hour Expenditure
Reports were submitted on a monthly basis to the following agencies: ADMN/ACO,
AFRL/CO, AFRL/VAAC, and AFRL/VAF.

9.4 Data Item A004 - Presentation Material
The subject contract Initial Briefing was held on 14 July 03 at Wright-Patterson AFB. In
attendance from the development team were John Steinbrenner (Pointwise), Todd Michal
(Boeing) and Pat Yagle (Lockheed-Martin). Lt. Nopadol Tarmallpark and Matt Grismer
represented the Air Force. A copy of the presentation in MicroSoft Powerpoint format
was delivered to Lt. Tarmallpark at this time.

9.5 Data Item A005 - Software User Manual
The primary product of this contracted effort is the definition of an API standard for
unstructured mesh generation. This API is delivered via a Software Users Manual that
documents the functionality of the API. This document is formatted in html, allowing it
to be accessed on users’ web browsers. This format also permits copious usage of
hyperlinks, allowing users to navigate the document more easily than with a standard
printed-page form. Much of the manual is generated procedurally via the Doxygen
software [27], a documentation system for many programming languages, including C.
Doxygen is freeware that is distributed via the GNU General Public License. As per
contract requirements, the User Manual is also delivered in Microsoft Word format.

70

The contract Statement of Work specifically requires that the User Manual contain a
thorough description of the API along with source code examples of simple meshing
tasks. Each of these requirements is satisfied in this document.

9.6 Source Code Utilities
Data Items A001 through A005 are the only strict deliverable items in this contract, and
each will be satisfied in full at contract completion. During the course of the API design,
however, it became apparent that a number of source code utilities could also be provided
as part of the API V2 distribution. The inclusion of these utilities in source code form
reduces the effort required to construct a UGC-compliant application or library, which in
turn increases the likelihood of the API being adopted by potential application and library
developers.

These C and Fortran utilities described below are used to perform necessary but relatively
generic tasks. Users are encouraged to use any of all of these utilities directly in their
implementation of a compliant application or library. The header files, which contain an
exact specification of API V2, should not be modified in order to preserve integrity with
the V2 specification. The library utilities, on the other hand, represent sample
implementations of functional sets. They may be edited at will in order to match the
requirements of the particular application. The UGC specification does not require the
use of any of these utilities except for the header files, however. The code that is
provided has been tested on various applications/hardware platforms, but is not
guaranteed to work for a specific application.

9.6.1 Header Files

The exact API V2 specification described in this document and in the User Manual is
provided in header file form in the dist/include directory. This directory consists of
five files that should be included directly into C applications and database and meshing
library implementations. These header files define functional prototypes, typedefs, data
structures, enums and macro variables.

9.6.2 Sample Database Library
The bulk of the work in implementing the UGC API into a new or existing application is
in the development of the database library functions. These functions transfer mesh data
between the application and library. A complete implementation of the database
functions is provided with the distribution in the form of a standalone library. This
implementation can be found in the dist/database directory. The utility library is
independent of any specific application or mesh library, which should permit reuse by
future developers. By reducing the number of functions that need to be implemented, the
database library should significantly decrease the effort involved in implementing the
UGC API. The database library was written in the C programming language, and is
directly callable from applications written in C or C++. The library data structures
mirror the UGC mesh model format (see Figure 1) and supports the simultaneous access
of multiple mesh models. The database is fully compliant with the UGC specification

71

and supports all UGC mesh entities and element types. Mesh data can be created,
retrieved and freed by the application or library through the UGCDB functions.
A limited amount of checking is built into the database functions to provide a robust and
efficient implementation. For instance, the library will disallow the destruction of a mesh
entity that is referenced by another mesh entity. All entity handles that are passed into
the database are checked to ensure they are appropriate for the operation that is requested.
For instance, a request to retrieve face data from a string entity will be trapped and result
in an error. If an error is encountered in any of the database functions a standard UGC
status code indicating the nature of the error will be returned.

9.6.3 Sample Fortran/C Library

The UGC specification defines the API in the C programming language. Use of the API
with another programming language requires that the developer handle the proper
communication between languages. One approach for providing this inter-language
communication is to write a C interface that wraps around the API function call. The
wrapper function must handle all of the necessary conversions between languages. This
approach was taken to develop a library of Fortran to C wrappers for all UGC database
and meshing library API functions. A general approach was taken to develop the
wrapper library that would work with a wide range of compilers and machine
architectures. The resulting utility library is provided with the API V2 distribution and
can be found in the dist/fortran directory.

The Fortran wrapper library uses a set of C preprocessor directives to create a common
method at the source level to allow for calls between languages. These directives are
tailored for each supported compiler to accommodate its particular nuances. While the
basic idea of allowing FORTRAN and C to call each other seems straightforward, there
are a considerable number of details that must be addressed. These go beyond the
appropriate capitalization and addition of underscores to the routine name to include
proper treatment of passed variable types, including strings and functions. All of the
preprocessor directives have been coded into a single include file called
bind_f_and_c.h. This include file also specifies a correspondence between C and
FORTRAN variable types for each supported C compiler. Within the wrapper, several
additional transformations are made. The wrapper interface ensures that arguments from
FORTRAN are passed by reference, even if values are used in the API function. 2-D
arrays are converted by creating a 1-D array of pointers into the 2-D array to simulate the
functionality of a C 2-D array. Character strings are converted to properly handle each
language’s treatment of the string termination. Subroutine and function names are
automatically modified to account for any name mangling performed by the compiler.

Supporting new compilers is a fairly simple task of defining about 20 preprocessor
directives. Most of these do not change between compilers, but were used because of
special cases. Presently, 17 compilers have been defined using this approach, including
UNIX workstations, as well as Linux and Windows NT. Specifically, it has been tested
using IBM AIX, Convex OS, Cray compilers, a variety of Hewlett-Packard operating
systems, SGI IRIX, Ultrix, VMS, Hitachi, Kendall Square, NEC machines, CDC, Fujitsu,
Windows NT, and Linux operating systems.

72

The source code for the Fortran wrappers is provided in the file ugc_fort77.c. The
interfaces are compatible with the Fortran 77 (F77) programming language with the
exception of subroutine name lengths. The UGC API naming convention is followed
with an extra extension of _F added to the end of the function name. For instance, the
Fortran wrapper to the UGCDB_Session_Create_Model() function is named
UGCDB_Session_Create_Model_F(). The wrapper interfaces are F77
subroutines. These do not return a status but instead return the status through a variable
in the argument list. The first argument in all Fortran interfaces is the status variable.
The rest of the wrapper argument lists follow the UGC API definition to the extent
possible. Exceptions to this rule are made for arguments of a data type that are not
compatible with Fortran. C structures are broken into multiple arguments, one for each
structure member. Arguments that are an enumerated type are treated as integers in the
Fortran interface. Fortran parameters for each of the valid enumerations are provided in
the Fortran include file ugc_fort77.inc. The integer variables can be assigned to
the parameter corresponding to a specific enumeration and passed to the Fortran
interface. Inside the wrapper, the integer will be converted to the appropriate
enumeration and passed on to the C function. An example of the Fortran equivalent call
for the API function UGCDB_SurfaceVertex_Assign_SurfaceGeometry() is
provided in Table 11.

C
Interface

UGCDB_SurfaceVertex_Assign_SurfaceGeometry

(UGCDB_ID SurfaceVertex, UGCG_SurfaceGeometry
*SurfaceGeometry)

Fortran
Interface

UGCDB_SurfaceVertex_Assign_SurfaceGeometry_F

(status, SurfaceVertex, subsurface, uv, dSdU,
dSdV, N, MinCurvature, MaxCurvature, Principal)

Table 11. Fortran and C Interfaces to
UGCDB_SurfaceVertex_Assign_SurfaceGeometry

In the example presented in Table 11, the Fortran interface differs from the C interfaces
in the following ways:

1. The function name includes the _F extension

2. A new argument has been added to hold the status code

3. The SurfaceGeometry structure has been broken into its members subsurface,
uv, dSdU, dSdV, N, MinCurvature, MaxCurvature, and
Principal.

Fortran77 does not have a pointer variable type equivalent to the C pointer. Therefore,
pointers cannot be passed through the argument list to be allocated by the function. For
the F77 wrappers, the data blocks must be pre dimensioned to the appropriate size and the

73

dimensioned size passed into the function. The wrapper will automatically handle the
transfer of data from the C data blocks to the pre-allocated Fortran array.

Many of the limitations in the F77 wrappers can be avoided if the application is written in
F90. Pointer variables and data structures are both supported under F90, although they
are not interchangeable with C pointers and structures. To take advantage of these F90
capabilities, a second library containing F90 compatible interfaces is located in the file
ugc_fort90.f90. These interfaces are fully compliant with the F90 programming
language. The F90 interfaces provide support for dynamic memory allocation and data
structure arguments. Only API functions that dynamically allocate memory or pass data
structures have an equivalent F90 interface. The names of the F90 interfaces are
distinguished with the _F90 extension. To support the C unsigned long data type
consistently on 32 and 64 bit architectures, care must be taken in declaring the variable in
the Fortran application. An example approach is provided in the file
ugc_fort90.inc.

9.6.4 Sample Plugin Library

The plugin library specification in API V2 was developed as a mechanism for the
dynamic loading of (possibly multiple) UGC-compliant meshing libraries. An example
plugin library based on the GLib software is included with the distribution, provided in
source code form in the dist/plugin directory. Users can refer to this code for the
implementation instructions.

The GLib software package contains the gmodule library of functions, which provide
the functionality to load libraries dynamically at runtime. GLib is available as part of the
GIMP Toolkit (GTK+) and may be downloaded freely. Using gmodule to dynamically
load and unload shared libraries is simplified through the use of libtool, available
from the Free Software Foundation's GNU Project.

An outline of the process to incorporate GLib within an application and a API V2-
compliant database library is described below. Users can refer to the source code for
more detailed information.

Integration into an Application

 #include the appropriate GLib and gmodule header files.

 #include the ugcplugin.h header file, which takes care of defining function
prototypes for gmodule.

 Open the library/plugin with g_module_open().

 Obtain the function pointers with g_module_symbol().

 Use the function pointers to access the functions from within the application.

 Close the library/plugin using g_module_close().

74

Integration into the Database Library

• #include the ugcplugin.h header file

• Code the library functions as usual.

• Compile the library using libtool as shown in the example Makefile.

To demonstrate the compilation and execution of a dynamically loaded UGC compliant
library under the Win32 platform, the sample application and libraries were compiled
using Dev-C++, available from Bloodshed Software.

A sample UGC API V2 compliant application (sample_app) and two libraries (module_a
and module_b) for Win32 have been provided. These can be referred to for the detail of
coding and compiling the GLib/gmodule functionality into applications and libraries,
but the additional steps beyond those for UNIX/Linux are as follows:

For Libraries/Plugins:

• Create a default DLL project in Dev-C++ and add the module_(a|b).c,
ugc.h and ugcplugin.h files.

• In ugc.h, add the following after the #define _UGC_H_ line:
#if BUILDING_DLL
#define DLLIMPORT __declspec(dllexport)
#else /* Not BUILDING_DLL */
#define DLLIMPORT __declspec(dllimport)
#endif /* Not BUILDING_DLL */

• In the ugc.h include file, prepend DLLIMPORT in front of each function
declaration so that
extern UGC_Status UGC_Session_Inquire_OptionalKeys(char
***Keys, UGC_Int *Numkeys);
becomes
DLLIMPORT extern UGC_Status
UGC_Session_Inquire_OptionalKeys(char ***Keys, UGC_Int
*Numkeys);

• Insert DLLIMPORT in front of the function names in module_(a|b).c.

For Applications:

• Create an ordinary Win32 console application in Dev-C++ and add
sample_app.c, ugcplugin.c, ugc.h, and ugcplugin.h.

• Compile and run the application.

75

10 Conclusions
A general API for unstructured mesh generation has been developed and demonstrated
under this contract. This API provides a general specification that standardizes the
communication between applications and mesh generation libraries. The design supports
a wide range of mesh data types and algorithms. More importantly it provides a general,
extensible framework that can be molded to meet future requirements. By itself, the
API provides little benefit. The real benefit will be realized when the specification is
adopted by developers and integrated into a wide range of mesh generation applications
and libraries across the industry. This will allow applications to rapidly integrate new
technology utilizing a wide range of mesh generation libraries with little or no
modification. The result will speed technology transition and reduce development time.

Widespread adoption of the API specification will not come easily. The API has been
designed to minimize the investment required to bring a library or application into
compliance; even so, developers and organizations will be reluctant to integrate the API
into their software until a critical mass of compliant software is available to justify the
cost of implementation. Successful proliferation of the API into a critical mass of
software will require encouragement and investment by UGC members and the Air
Force.

Several steps can be taken to help advance the API. The specification will need to be
publicized so that developers are aware of its existence and the benefits that it offers.
This can be accomplished through technical conferences and industry forums. The API
documentation must be readily available to the general public and support available to
prospective developers. Initial developer support will come from the UGC as a
voluntary users group that can answer questions and provide information. The
demonstrations provided in this report form the beginning of a repository of examples of
API compliant applications and libraries. Additional examples will continue to be
developed and added to the repository as developers adopt and implement the
specification. These examples will in turn assist future developers.

As more people use the specification and technology continues to evolve, the API
specification will undoubtedly need to be modified. A documented process will need to
be defined and managed by the UGC for proposing and modifying the public
specification. The UGC may also wish to define a process for certifying library and
application compliance with the specification.

While sufficient for most applications, the current scope of the specification will restrict
its use in some software. Expansion to new meshing operations such as adaptation and
mesh partitioning can be accommodated very easily with minor changes to the
specification and no changes in the API functions. Some meshing operations such as
agglomeration will require the addition of additional mesh elements such as n-sided faces
and cells. Expansion to include additional mesh types such as structured, hierarchical
and chimera meshes should also be considered in future versions of the API. These types
of changes will most likely require the addition of new API functions.

76

77

Adoption of the UGC API version 2.0 as an industry standard will radically change the
way mesh generation technology is transitioned. With a minor investment to make their
software compliant, developers will be able to offer their users a much wider range of
capabilities and algorithms than has ever been possible.

11 References
1. International Meshing Roundtable, http://www.imr.sandia.gov/.
2. International Society of Grid Generation, http://www.isg.org/.
3. Object Management Group, Inc., http://www.omg.org/news/about.
4. The CFD General Notation System (CGNS), http://www.cgns.org/.
5. Unstructured Grid Consortium, http://www.pointwise.com/ugc.
6. UGC Standards Document, Version 1.0, 2002,

http://www.pointwise.com/ugc/ugcstandv1.pdf.
7. Algorithm Oriented Mesh Database, http://www.scorec.rpi.edu/AOMD.
8. Field Model Library, http://field-model.sourceforge.net/.
9. Grid Algorithms Library, http://www.math.tu-cottbus.de/~berti/gral
10. Tera-Scale Simulation Tools and Technology Center, http://www.tstt-scidac.org/
11. GNU Triangulated Surface Library, http://gts.sourceforge.net/.
12. 3D ACIS Modeler, http://www.spatial.com/.
13. Parasolid, http://www.eds.com/products/plt/parasolid.
14. Open CASCADE, http://www.opencascade.org/.
15. CAPRI: Computational Analysis Programming Tool,

http://raphael.mit.edu/capri/docs.html.
16. CAD Services Specification of the Object Management Group,

http://mantis.omg.org/mfgcadv1-2rtf.htm.
17. Geometry and Grid Toolkit (GGTK),

http://www.eng.uab.edu/me/ETLab/Software/GGTK.
18. Standard Templates Library, http://www.sgi.com/tech/stl.
19. Common Object Model, http://www.microsoft.com/com.
20. Common Component Architecture, http://www.cca-forum.org/software.html.
21. SIDL/Babel, http://www.llnl.gov/CASC/components.
22. PETSc, http://www-fp.mcs.anl.gov/petsc.
23. GLib/GModule documentation, http://www.gtk/org/.
24. Marcum, D.L. and Weatherill, N.P., "Unstructured Grid Generation using

Iterative Point Insertion and Local Reconnection," AIAA Journal, Vol. 33, No. 9,
pp 1619-1625, September 1995.

25. MADCAP.
26. APPT.
27. Doxygen, http://www.doxygen.org/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

